MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 25115
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20603), left modules over such subrings are the same as right modules, see rmodislmod 20950. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Distinct variable group:   𝑓,𝑘,𝑤

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 25114 . 2 class ℂMod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1536 . . . . . . 7 class 𝑓
4 ccnfld 21387 . . . . . . . 8 class fld
5 vk . . . . . . . . 9 setvar 𝑘
65cv 1536 . . . . . . . 8 class 𝑘
7 cress 17287 . . . . . . . 8 class s
84, 6, 7co 7448 . . . . . . 7 class (ℂflds 𝑘)
93, 8wceq 1537 . . . . . 6 wff 𝑓 = (ℂflds 𝑘)
10 csubrg 20595 . . . . . . . 8 class SubRing
114, 10cfv 6573 . . . . . . 7 class (SubRing‘ℂfld)
126, 11wcel 2108 . . . . . 6 wff 𝑘 ∈ (SubRing‘ℂfld)
139, 12wa 395 . . . . 5 wff (𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
14 cbs 17258 . . . . . 6 class Base
153, 14cfv 6573 . . . . 5 class (Base‘𝑓)
1613, 5, 15wsbc 3804 . . . 4 wff [(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
17 vw . . . . . 6 setvar 𝑤
1817cv 1536 . . . . 5 class 𝑤
19 csca 17314 . . . . 5 class Scalar
2018, 19cfv 6573 . . . 4 class (Scalar‘𝑤)
2116, 2, 20wsbc 3804 . . 3 wff [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
22 clmod 20880 . . 3 class LMod
2321, 17, 22crab 3443 . 2 class {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
241, 23wceq 1537 1 wff ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  25116
  Copyright terms: Public domain W3C validator