MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 24235
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows us to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20037), left modules over such subrings are the same as right modules, see rmodislmod 20200. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Distinct variable group:   𝑓,𝑘,𝑤

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 24234 . 2 class ℂMod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1538 . . . . . . 7 class 𝑓
4 ccnfld 20606 . . . . . . . 8 class fld
5 vk . . . . . . . . 9 setvar 𝑘
65cv 1538 . . . . . . . 8 class 𝑘
7 cress 16950 . . . . . . . 8 class s
84, 6, 7co 7284 . . . . . . 7 class (ℂflds 𝑘)
93, 8wceq 1539 . . . . . 6 wff 𝑓 = (ℂflds 𝑘)
10 csubrg 20029 . . . . . . . 8 class SubRing
114, 10cfv 6437 . . . . . . 7 class (SubRing‘ℂfld)
126, 11wcel 2107 . . . . . 6 wff 𝑘 ∈ (SubRing‘ℂfld)
139, 12wa 396 . . . . 5 wff (𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
14 cbs 16921 . . . . . 6 class Base
153, 14cfv 6437 . . . . 5 class (Base‘𝑓)
1613, 5, 15wsbc 3717 . . . 4 wff [(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
17 vw . . . . . 6 setvar 𝑤
1817cv 1538 . . . . 5 class 𝑤
19 csca 16974 . . . . 5 class Scalar
2018, 19cfv 6437 . . . 4 class (Scalar‘𝑤)
2116, 2, 20wsbc 3717 . . 3 wff [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
22 clmod 20132 . . 3 class LMod
2321, 17, 22crab 3069 . 2 class {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
241, 23wceq 1539 1 wff ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  24236
  Copyright terms: Public domain W3C validator