Step | Hyp | Ref
| Expression |
1 | | cclm 24569 |
. 2
class
βMod |
2 | | vf |
. . . . . . . 8
setvar π |
3 | 2 | cv 1540 |
. . . . . . 7
class π |
4 | | ccnfld 20936 |
. . . . . . . 8
class
βfld |
5 | | vk |
. . . . . . . . 9
setvar π |
6 | 5 | cv 1540 |
. . . . . . . 8
class π |
7 | | cress 17169 |
. . . . . . . 8
class
βΎs |
8 | 4, 6, 7 | co 7405 |
. . . . . . 7
class
(βfld βΎs π) |
9 | 3, 8 | wceq 1541 |
. . . . . 6
wff π = (βfld
βΎs π) |
10 | | csubrg 20351 |
. . . . . . . 8
class
SubRing |
11 | 4, 10 | cfv 6540 |
. . . . . . 7
class
(SubRingββfld) |
12 | 6, 11 | wcel 2106 |
. . . . . 6
wff π β
(SubRingββfld) |
13 | 9, 12 | wa 396 |
. . . . 5
wff (π = (βfld
βΎs π)
β§ π β
(SubRingββfld)) |
14 | | cbs 17140 |
. . . . . 6
class
Base |
15 | 3, 14 | cfv 6540 |
. . . . 5
class
(Baseβπ) |
16 | 13, 5, 15 | wsbc 3776 |
. . . 4
wff
[(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld)) |
17 | | vw |
. . . . . 6
setvar π€ |
18 | 17 | cv 1540 |
. . . . 5
class π€ |
19 | | csca 17196 |
. . . . 5
class
Scalar |
20 | 18, 19 | cfv 6540 |
. . . 4
class
(Scalarβπ€) |
21 | 16, 2, 20 | wsbc 3776 |
. . 3
wff
[(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld)) |
22 | | clmod 20463 |
. . 3
class
LMod |
23 | 21, 17, 22 | crab 3432 |
. 2
class {π€ β LMod β£
[(Scalarβπ€) /
π][(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld))} |
24 | 1, 23 | wceq 1541 |
1
wff βMod
= {π€ β LMod β£
[(Scalarβπ€) /
π][(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld))} |