MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 24570
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers β„‚fld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20359), left modules over such subrings are the same as right modules, see rmodislmod 20532. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm β„‚Mod = {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
Distinct variable group:   𝑓,π‘˜,𝑀

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 24569 . 2 class β„‚Mod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1540 . . . . . . 7 class 𝑓
4 ccnfld 20936 . . . . . . . 8 class β„‚fld
5 vk . . . . . . . . 9 setvar π‘˜
65cv 1540 . . . . . . . 8 class π‘˜
7 cress 17169 . . . . . . . 8 class β†Ύs
84, 6, 7co 7405 . . . . . . 7 class (β„‚fld β†Ύs π‘˜)
93, 8wceq 1541 . . . . . 6 wff 𝑓 = (β„‚fld β†Ύs π‘˜)
10 csubrg 20351 . . . . . . . 8 class SubRing
114, 10cfv 6540 . . . . . . 7 class (SubRingβ€˜β„‚fld)
126, 11wcel 2106 . . . . . 6 wff π‘˜ ∈ (SubRingβ€˜β„‚fld)
139, 12wa 396 . . . . 5 wff (𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))
14 cbs 17140 . . . . . 6 class Base
153, 14cfv 6540 . . . . 5 class (Baseβ€˜π‘“)
1613, 5, 15wsbc 3776 . . . 4 wff [(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))
17 vw . . . . . 6 setvar 𝑀
1817cv 1540 . . . . 5 class 𝑀
19 csca 17196 . . . . 5 class Scalar
2018, 19cfv 6540 . . . 4 class (Scalarβ€˜π‘€)
2116, 2, 20wsbc 3776 . . 3 wff [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))
22 clmod 20463 . . 3 class LMod
2321, 17, 22crab 3432 . 2 class {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
241, 23wceq 1541 1 wff β„‚Mod = {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  24571
  Copyright terms: Public domain W3C validator