Detailed syntax breakdown of Definition df-clm
Step | Hyp | Ref
| Expression |
1 | | cclm 24234 |
. 2
class
ℂMod |
2 | | vf |
. . . . . . . 8
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑓 |
4 | | ccnfld 20606 |
. . . . . . . 8
class
ℂfld |
5 | | vk |
. . . . . . . . 9
setvar 𝑘 |
6 | 5 | cv 1538 |
. . . . . . . 8
class 𝑘 |
7 | | cress 16950 |
. . . . . . . 8
class
↾s |
8 | 4, 6, 7 | co 7284 |
. . . . . . 7
class
(ℂfld ↾s 𝑘) |
9 | 3, 8 | wceq 1539 |
. . . . . 6
wff 𝑓 = (ℂfld
↾s 𝑘) |
10 | | csubrg 20029 |
. . . . . . . 8
class
SubRing |
11 | 4, 10 | cfv 6437 |
. . . . . . 7
class
(SubRing‘ℂfld) |
12 | 6, 11 | wcel 2107 |
. . . . . 6
wff 𝑘 ∈
(SubRing‘ℂfld) |
13 | 9, 12 | wa 396 |
. . . . 5
wff (𝑓 = (ℂfld
↾s 𝑘)
∧ 𝑘 ∈
(SubRing‘ℂfld)) |
14 | | cbs 16921 |
. . . . . 6
class
Base |
15 | 3, 14 | cfv 6437 |
. . . . 5
class
(Base‘𝑓) |
16 | 13, 5, 15 | wsbc 3717 |
. . . 4
wff
[(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld)) |
17 | | vw |
. . . . . 6
setvar 𝑤 |
18 | 17 | cv 1538 |
. . . . 5
class 𝑤 |
19 | | csca 16974 |
. . . . 5
class
Scalar |
20 | 18, 19 | cfv 6437 |
. . . 4
class
(Scalar‘𝑤) |
21 | 16, 2, 20 | wsbc 3717 |
. . 3
wff
[(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld)) |
22 | | clmod 20132 |
. . 3
class
LMod |
23 | 21, 17, 22 | crab 3069 |
. 2
class {𝑤 ∈ LMod ∣
[(Scalar‘𝑤) /
𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld))} |
24 | 1, 23 | wceq 1539 |
1
wff ℂMod
= {𝑤 ∈ LMod ∣
[(Scalar‘𝑤) /
𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld))} |