MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 24970
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20491), left modules over such subrings are the same as right modules, see rmodislmod 20843. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Distinct variable group:   𝑓,𝑘,𝑤

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 24969 . 2 class ℂMod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1539 . . . . . . 7 class 𝑓
4 ccnfld 21271 . . . . . . . 8 class fld
5 vk . . . . . . . . 9 setvar 𝑘
65cv 1539 . . . . . . . 8 class 𝑘
7 cress 17207 . . . . . . . 8 class s
84, 6, 7co 7390 . . . . . . 7 class (ℂflds 𝑘)
93, 8wceq 1540 . . . . . 6 wff 𝑓 = (ℂflds 𝑘)
10 csubrg 20485 . . . . . . . 8 class SubRing
114, 10cfv 6514 . . . . . . 7 class (SubRing‘ℂfld)
126, 11wcel 2109 . . . . . 6 wff 𝑘 ∈ (SubRing‘ℂfld)
139, 12wa 395 . . . . 5 wff (𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
14 cbs 17186 . . . . . 6 class Base
153, 14cfv 6514 . . . . 5 class (Base‘𝑓)
1613, 5, 15wsbc 3756 . . . 4 wff [(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
17 vw . . . . . 6 setvar 𝑤
1817cv 1539 . . . . 5 class 𝑤
19 csca 17230 . . . . 5 class Scalar
2018, 19cfv 6514 . . . 4 class (Scalar‘𝑤)
2116, 2, 20wsbc 3756 . . 3 wff [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
22 clmod 20773 . . 3 class LMod
2321, 17, 22crab 3408 . 2 class {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
241, 23wceq 1540 1 wff ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  24971
  Copyright terms: Public domain W3C validator