MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 24132
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows us to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 19943), left modules over such subrings are the same as right modules, see rmodislmod 20106. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Distinct variable group:   𝑓,𝑘,𝑤

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 24131 . 2 class ℂMod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1538 . . . . . . 7 class 𝑓
4 ccnfld 20510 . . . . . . . 8 class fld
5 vk . . . . . . . . 9 setvar 𝑘
65cv 1538 . . . . . . . 8 class 𝑘
7 cress 16867 . . . . . . . 8 class s
84, 6, 7co 7255 . . . . . . 7 class (ℂflds 𝑘)
93, 8wceq 1539 . . . . . 6 wff 𝑓 = (ℂflds 𝑘)
10 csubrg 19935 . . . . . . . 8 class SubRing
114, 10cfv 6418 . . . . . . 7 class (SubRing‘ℂfld)
126, 11wcel 2108 . . . . . 6 wff 𝑘 ∈ (SubRing‘ℂfld)
139, 12wa 395 . . . . 5 wff (𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
14 cbs 16840 . . . . . 6 class Base
153, 14cfv 6418 . . . . 5 class (Base‘𝑓)
1613, 5, 15wsbc 3711 . . . 4 wff [(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
17 vw . . . . . 6 setvar 𝑤
1817cv 1538 . . . . 5 class 𝑤
19 csca 16891 . . . . 5 class Scalar
2018, 19cfv 6418 . . . 4 class (Scalar‘𝑤)
2116, 2, 20wsbc 3711 . . 3 wff [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
22 clmod 20038 . . 3 class LMod
2321, 17, 22crab 3067 . 2 class {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
241, 23wceq 1539 1 wff ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  24133
  Copyright terms: Public domain W3C validator