MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 25109
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20591), left modules over such subrings are the same as right modules, see rmodislmod 20944. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Distinct variable group:   𝑓,𝑘,𝑤

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 25108 . 2 class ℂMod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1535 . . . . . . 7 class 𝑓
4 ccnfld 21381 . . . . . . . 8 class fld
5 vk . . . . . . . . 9 setvar 𝑘
65cv 1535 . . . . . . . 8 class 𝑘
7 cress 17273 . . . . . . . 8 class s
84, 6, 7co 7430 . . . . . . 7 class (ℂflds 𝑘)
93, 8wceq 1536 . . . . . 6 wff 𝑓 = (ℂflds 𝑘)
10 csubrg 20585 . . . . . . . 8 class SubRing
114, 10cfv 6562 . . . . . . 7 class (SubRing‘ℂfld)
126, 11wcel 2105 . . . . . 6 wff 𝑘 ∈ (SubRing‘ℂfld)
139, 12wa 395 . . . . 5 wff (𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
14 cbs 17244 . . . . . 6 class Base
153, 14cfv 6562 . . . . 5 class (Base‘𝑓)
1613, 5, 15wsbc 3790 . . . 4 wff [(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
17 vw . . . . . 6 setvar 𝑤
1817cv 1535 . . . . 5 class 𝑤
19 csca 17300 . . . . 5 class Scalar
2018, 19cfv 6562 . . . 4 class (Scalar‘𝑤)
2116, 2, 20wsbc 3790 . . 3 wff [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
22 clmod 20874 . . 3 class LMod
2321, 17, 22crab 3432 . 2 class {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
241, 23wceq 1536 1 wff ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  25110
  Copyright terms: Public domain W3C validator