MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 24985
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20485), left modules over such subrings are the same as right modules, see rmodislmod 20858. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Distinct variable group:   𝑓,𝑘,𝑤

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 24984 . 2 class ℂMod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1540 . . . . . . 7 class 𝑓
4 ccnfld 21286 . . . . . . . 8 class fld
5 vk . . . . . . . . 9 setvar 𝑘
65cv 1540 . . . . . . . 8 class 𝑘
7 cress 17136 . . . . . . . 8 class s
84, 6, 7co 7341 . . . . . . 7 class (ℂflds 𝑘)
93, 8wceq 1541 . . . . . 6 wff 𝑓 = (ℂflds 𝑘)
10 csubrg 20479 . . . . . . . 8 class SubRing
114, 10cfv 6476 . . . . . . 7 class (SubRing‘ℂfld)
126, 11wcel 2111 . . . . . 6 wff 𝑘 ∈ (SubRing‘ℂfld)
139, 12wa 395 . . . . 5 wff (𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
14 cbs 17115 . . . . . 6 class Base
153, 14cfv 6476 . . . . 5 class (Base‘𝑓)
1613, 5, 15wsbc 3736 . . . 4 wff [(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
17 vw . . . . . 6 setvar 𝑤
1817cv 1540 . . . . 5 class 𝑤
19 csca 17159 . . . . 5 class Scalar
2018, 19cfv 6476 . . . 4 class (Scalar‘𝑤)
2116, 2, 20wsbc 3736 . . 3 wff [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
22 clmod 20788 . . 3 class LMod
2321, 17, 22crab 3395 . 2 class {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
241, 23wceq 1541 1 wff ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  24986
  Copyright terms: Public domain W3C validator