MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 24963
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20484), left modules over such subrings are the same as right modules, see rmodislmod 20836. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Distinct variable group:   𝑓,𝑘,𝑤

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 24962 . 2 class ℂMod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1539 . . . . . . 7 class 𝑓
4 ccnfld 21264 . . . . . . . 8 class fld
5 vk . . . . . . . . 9 setvar 𝑘
65cv 1539 . . . . . . . 8 class 𝑘
7 cress 17200 . . . . . . . 8 class s
84, 6, 7co 7387 . . . . . . 7 class (ℂflds 𝑘)
93, 8wceq 1540 . . . . . 6 wff 𝑓 = (ℂflds 𝑘)
10 csubrg 20478 . . . . . . . 8 class SubRing
114, 10cfv 6511 . . . . . . 7 class (SubRing‘ℂfld)
126, 11wcel 2109 . . . . . 6 wff 𝑘 ∈ (SubRing‘ℂfld)
139, 12wa 395 . . . . 5 wff (𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
14 cbs 17179 . . . . . 6 class Base
153, 14cfv 6511 . . . . 5 class (Base‘𝑓)
1613, 5, 15wsbc 3753 . . . 4 wff [(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
17 vw . . . . . 6 setvar 𝑤
1817cv 1539 . . . . 5 class 𝑤
19 csca 17223 . . . . 5 class Scalar
2018, 19cfv 6511 . . . 4 class (Scalar‘𝑤)
2116, 2, 20wsbc 3753 . . 3 wff [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))
22 clmod 20766 . . 3 class LMod
2321, 17, 22crab 3405 . 2 class {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
241, 23wceq 1540 1 wff ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  24964
  Copyright terms: Public domain W3C validator