MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clm Structured version   Visualization version   GIF version

Definition df-clm 24803
Description: Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers β„‚fld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20465), left modules over such subrings are the same as right modules, see rmodislmod 20684. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
df-clm β„‚Mod = {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
Distinct variable group:   𝑓,π‘˜,𝑀

Detailed syntax breakdown of Definition df-clm
StepHypRef Expression
1 cclm 24802 . 2 class β„‚Mod
2 vf . . . . . . . 8 setvar 𝑓
32cv 1540 . . . . . . 7 class 𝑓
4 ccnfld 21144 . . . . . . . 8 class β„‚fld
5 vk . . . . . . . . 9 setvar π‘˜
65cv 1540 . . . . . . . 8 class π‘˜
7 cress 17177 . . . . . . . 8 class β†Ύs
84, 6, 7co 7411 . . . . . . 7 class (β„‚fld β†Ύs π‘˜)
93, 8wceq 1541 . . . . . 6 wff 𝑓 = (β„‚fld β†Ύs π‘˜)
10 csubrg 20457 . . . . . . . 8 class SubRing
114, 10cfv 6543 . . . . . . 7 class (SubRingβ€˜β„‚fld)
126, 11wcel 2106 . . . . . 6 wff π‘˜ ∈ (SubRingβ€˜β„‚fld)
139, 12wa 396 . . . . 5 wff (𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))
14 cbs 17148 . . . . . 6 class Base
153, 14cfv 6543 . . . . 5 class (Baseβ€˜π‘“)
1613, 5, 15wsbc 3777 . . . 4 wff [(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))
17 vw . . . . . 6 setvar 𝑀
1817cv 1540 . . . . 5 class 𝑀
19 csca 17204 . . . . 5 class Scalar
2018, 19cfv 6543 . . . 4 class (Scalarβ€˜π‘€)
2116, 2, 20wsbc 3777 . . 3 wff [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))
22 clmod 20614 . . 3 class LMod
2321, 17, 22crab 3432 . 2 class {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
241, 23wceq 1541 1 wff β„‚Mod = {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
Colors of variables: wff setvar class
This definition is referenced by:  isclm  24804
  Copyright terms: Public domain W3C validator