MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmodislmod Structured version   Visualization version   GIF version

Theorem rmodislmod 20892
Description: The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 20824 of a left module, see also islmod 20826. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
rmodislmod.v 𝑉 = (Base‘𝑅)
rmodislmod.a + = (+g𝑅)
rmodislmod.s · = ( ·𝑠𝑅)
rmodislmod.f 𝐹 = (Scalar‘𝑅)
rmodislmod.k 𝐾 = (Base‘𝐹)
rmodislmod.p = (+g𝐹)
rmodislmod.t × = (.r𝐹)
rmodislmod.u 1 = (1r𝐹)
rmodislmod.r (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
rmodislmod.m = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
rmodislmod.l 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
Assertion
Ref Expression
rmodislmod (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Distinct variable groups:   × ,𝑞,𝑟,𝑤,𝑥   × ,𝑠,𝑣   · ,𝑞,𝑟,𝑤,𝑥   · ,𝑠,𝑣   𝐾,𝑞,𝑟,𝑥   𝐾,𝑠,𝑣   𝑉,𝑞,𝑟,𝑤,𝑥   𝑉,𝑠,𝑣   𝐹,𝑠,𝑣   1 ,𝑠,𝑣   1 ,𝑞,𝑟,𝑤,𝑥   + ,𝑞,𝑟,𝑤,𝑥   + ,𝑠,𝑣   ,𝑞,𝑟,𝑤,𝑥   ,𝑠,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐹(𝑥,𝑤,𝑟,𝑞)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐾(𝑤)   𝐿(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)

Proof of Theorem rmodislmod
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmodislmod.v . . . . 5 𝑉 = (Base‘𝑅)
2 baseid 17236 . . . . . 6 Base = Slot (Base‘ndx)
3 vscandxnbasendx 17340 . . . . . . 7 ( ·𝑠 ‘ndx) ≠ (Base‘ndx)
43necomi 2987 . . . . . 6 (Base‘ndx) ≠ ( ·𝑠 ‘ndx)
52, 4setsnid 17232 . . . . 5 (Base‘𝑅) = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
61, 5eqtri 2759 . . . 4 𝑉 = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
7 rmodislmod.l . . . . . 6 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
87eqcomi 2745 . . . . 5 (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩) = 𝐿
98fveq2i 6884 . . . 4 (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = (Base‘𝐿)
106, 9eqtri 2759 . . 3 𝑉 = (Base‘𝐿)
1110a1i 11 . 2 (𝐹 ∈ CRing → 𝑉 = (Base‘𝐿))
12 plusgid 17303 . . . . 5 +g = Slot (+g‘ndx)
13 vscandxnplusgndx 17341 . . . . . 6 ( ·𝑠 ‘ndx) ≠ (+g‘ndx)
1413necomi 2987 . . . . 5 (+g‘ndx) ≠ ( ·𝑠 ‘ndx)
1512, 14setsnid 17232 . . . 4 (+g𝑅) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
16 rmodislmod.a . . . 4 + = (+g𝑅)
177fveq2i 6884 . . . 4 (+g𝐿) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
1815, 16, 173eqtr4i 2769 . . 3 + = (+g𝐿)
1918a1i 11 . 2 (𝐹 ∈ CRing → + = (+g𝐿))
20 scaid 17334 . . . . 5 Scalar = Slot (Scalar‘ndx)
21 vscandxnscandx 17343 . . . . . 6 ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx)
2221necomi 2987 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
2320, 22setsnid 17232 . . . 4 (Scalar‘𝑅) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
24 rmodislmod.f . . . 4 𝐹 = (Scalar‘𝑅)
257fveq2i 6884 . . . 4 (Scalar‘𝐿) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
2623, 24, 253eqtr4i 2769 . . 3 𝐹 = (Scalar‘𝐿)
2726a1i 11 . 2 (𝐹 ∈ CRing → 𝐹 = (Scalar‘𝐿))
28 rmodislmod.r . . . . . 6 (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
2928simp1i 1139 . . . . 5 𝑅 ∈ Grp
30 rmodislmod.k . . . . . . 7 𝐾 = (Base‘𝐹)
3130fvexi 6895 . . . . . 6 𝐾 ∈ V
321fvexi 6895 . . . . . 6 𝑉 ∈ V
33 rmodislmod.m . . . . . . 7 = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
3433mpoexg 8080 . . . . . 6 ((𝐾 ∈ V ∧ 𝑉 ∈ V) → ∈ V)
3531, 32, 34mp2an 692 . . . . 5 ∈ V
36 vscaid 17339 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
3736setsid 17231 . . . . 5 ((𝑅 ∈ Grp ∧ ∈ V) → = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)))
3829, 35, 37mp2an 692 . . . 4 = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
398fveq2i 6884 . . . 4 ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = ( ·𝑠𝐿)
4038, 39eqtri 2759 . . 3 = ( ·𝑠𝐿)
4140a1i 11 . 2 (𝐹 ∈ CRing → = ( ·𝑠𝐿))
4230a1i 11 . 2 (𝐹 ∈ CRing → 𝐾 = (Base‘𝐹))
43 rmodislmod.p . . 3 = (+g𝐹)
4443a1i 11 . 2 (𝐹 ∈ CRing → = (+g𝐹))
45 rmodislmod.t . . 3 × = (.r𝐹)
4645a1i 11 . 2 (𝐹 ∈ CRing → × = (.r𝐹))
47 rmodislmod.u . . 3 1 = (1r𝐹)
4847a1i 11 . 2 (𝐹 ∈ CRing → 1 = (1r𝐹))
49 crngring 20210 . 2 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
501eqcomi 2745 . . . . . 6 (Base‘𝑅) = 𝑉
5150, 10eqtri 2759 . . . . 5 (Base‘𝑅) = (Base‘𝐿)
5215, 17eqtr4i 2762 . . . . 5 (+g𝑅) = (+g𝐿)
5351, 52grpprop 18940 . . . 4 (𝑅 ∈ Grp ↔ 𝐿 ∈ Grp)
5429, 53mpbi 230 . . 3 𝐿 ∈ Grp
5554a1i 11 . 2 (𝐹 ∈ CRing → 𝐿 ∈ Grp)
5633a1i 11 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
57 oveq12 7419 . . . . . 6 ((𝑣 = 𝑏𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
5857ancoms 458 . . . . 5 ((𝑠 = 𝑎𝑣 = 𝑏) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
5958adantl 481 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
60 simp2 1137 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑎𝐾)
61 simp3 1138 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑏𝑉)
62 ovexd 7445 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ V)
6356, 59, 60, 61, 62ovmpod 7564 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
64 simpl1 1192 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 𝑟) ∈ 𝑉)
65642ralimi 3111 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
66652ralimi 3111 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
67 ringgrp 20203 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
6830grpbn0 18954 . . . . . . . . . 10 (𝐹 ∈ Grp → 𝐾 ≠ ∅)
6967, 68syl 17 . . . . . . . . 9 (𝐹 ∈ Ring → 𝐾 ≠ ∅)
70693ad2ant2 1134 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝐾 ≠ ∅)
7128, 70ax-mp 5 . . . . . . 7 𝐾 ≠ ∅
72 rspn0 4336 . . . . . . 7 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
7371, 72ax-mp 5 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
74 ralcom 3274 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
751grpbn0 18954 . . . . . . . . . . 11 (𝑅 ∈ Grp → 𝑉 ≠ ∅)
76753ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝑉 ≠ ∅)
7728, 76ax-mp 5 . . . . . . . . 9 𝑉 ≠ ∅
78 rspn0 4336 . . . . . . . . 9 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
7977, 78ax-mp 5 . . . . . . . 8 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
80 oveq2 7418 . . . . . . . . . . 11 (𝑟 = 𝑎 → (𝑤 · 𝑟) = (𝑤 · 𝑎))
8180eleq1d 2820 . . . . . . . . . 10 (𝑟 = 𝑎 → ((𝑤 · 𝑟) ∈ 𝑉 ↔ (𝑤 · 𝑎) ∈ 𝑉))
82 oveq1 7417 . . . . . . . . . . 11 (𝑤 = 𝑏 → (𝑤 · 𝑎) = (𝑏 · 𝑎))
8382eleq1d 2820 . . . . . . . . . 10 (𝑤 = 𝑏 → ((𝑤 · 𝑎) ∈ 𝑉 ↔ (𝑏 · 𝑎) ∈ 𝑉))
8481, 83rspc2v 3617 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
85843adant1 1130 . . . . . . . 8 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
8679, 85syl5com 31 . . . . . . 7 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
8774, 86sylbi 217 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
8866, 73, 873syl 18 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
89883ad2ant3 1135 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
9028, 89ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉)
9163, 90eqeltrd 2835 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) ∈ 𝑉)
9233a1i 11 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
93 oveq12 7419 . . . . . . . 8 ((𝑣 = (𝑏 + 𝑐) ∧ 𝑠 = 𝑎) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
9493ancoms 458 . . . . . . 7 ((𝑠 = 𝑎𝑣 = (𝑏 + 𝑐)) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
9594adantl 481 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = (𝑏 + 𝑐))) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
96 simp1 1136 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑎𝐾)
971, 16grpcl 18929 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
9829, 97mp3an1 1450 . . . . . . 7 ((𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
99983adant1 1130 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
100 ovexd 7445 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) ∈ V)
10192, 95, 96, 99, 100ovmpod 7564 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 + 𝑐) · 𝑎))
102 simpl2 1193 . . . . . . . . . 10 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1031022ralimi 3111 . . . . . . . . 9 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1041032ralimi 3111 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
105 rspn0 4336 . . . . . . . . . 10 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟))))
10671, 105ax-mp 5 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
107 oveq2 7418 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 + 𝑥) · 𝑎))
108 oveq2 7418 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → (𝑥 · 𝑟) = (𝑥 · 𝑎))
10980, 108oveq12d 7428 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 · 𝑟) + (𝑥 · 𝑟)) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)))
110107, 109eqeq12d 2752 . . . . . . . . . . 11 (𝑟 = 𝑎 → (((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ↔ ((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎))))
111 oveq2 7418 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑤 + 𝑥) = (𝑤 + 𝑐))
112111oveq1d 7425 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 + 𝑥) · 𝑎) = ((𝑤 + 𝑐) · 𝑎))
113 oveq1 7417 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑥 · 𝑎) = (𝑐 · 𝑎))
114113oveq2d 7426 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 · 𝑎) + (𝑥 · 𝑎)) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)))
115112, 114eqeq12d 2752 . . . . . . . . . . 11 (𝑥 = 𝑐 → (((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)) ↔ ((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎))))
116 oveq1 7417 . . . . . . . . . . . . 13 (𝑤 = 𝑏 → (𝑤 + 𝑐) = (𝑏 + 𝑐))
117116oveq1d 7425 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 + 𝑐) · 𝑎) = ((𝑏 + 𝑐) · 𝑎))
11882oveq1d 7425 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 · 𝑎) + (𝑐 · 𝑎)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
119117, 118eqeq12d 2752 . . . . . . . . . . 11 (𝑤 = 𝑏 → (((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)) ↔ ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
120110, 115, 119rspc3v 3622 . . . . . . . . . 10 ((𝑎𝐾𝑐𝑉𝑏𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1211203com23 1126 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
122106, 121syl5com 31 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
123104, 122syl 17 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1241233ad2ant3 1135 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
12528, 124ax-mp 5 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
126101, 125eqtrd 2771 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
127126adantl 481 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
12858adantl 481 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
129 simp2 1137 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑏𝑉)
130 ovexd 7445 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 · 𝑎) ∈ V)
13192, 128, 96, 129, 130ovmpod 7564 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
132 oveq12 7419 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
133132ancoms 458 . . . . . . 7 ((𝑠 = 𝑎𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
134133adantl 481 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
135 simp3 1138 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑐𝑉)
136 ovexd 7445 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
13792, 134, 96, 135, 136ovmpod 7564 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
138131, 137oveq12d 7428 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
139138adantl 481 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
140127, 139eqtr4d 2774 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑎 𝑏) + (𝑎 𝑐)))
141 simpl3 1194 . . . . . . . . 9 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1421412ralimi 3111 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1431422ralimi 3111 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
144 ralrot3 3278 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
145 rspn0 4336 . . . . . . . . . 10 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))))
14677, 145ax-mp 5 . . . . . . . . 9 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
147 oveq1 7417 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑞 𝑟) = (𝑎 𝑟))
148147oveq2d 7426 . . . . . . . . . . 11 (𝑞 = 𝑎 → (𝑤 · (𝑞 𝑟)) = (𝑤 · (𝑎 𝑟)))
149 oveq2 7418 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑤 · 𝑞) = (𝑤 · 𝑎))
150149oveq1d 7425 . . . . . . . . . . 11 (𝑞 = 𝑎 → ((𝑤 · 𝑞) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)))
151148, 150eqeq12d 2752 . . . . . . . . . 10 (𝑞 = 𝑎 → ((𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟))))
152 oveq2 7418 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑎 𝑟) = (𝑎 𝑏))
153152oveq2d 7426 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝑤 · (𝑎 𝑟)) = (𝑤 · (𝑎 𝑏)))
154 oveq2 7418 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑤 · 𝑟) = (𝑤 · 𝑏))
155154oveq2d 7426 . . . . . . . . . . 11 (𝑟 = 𝑏 → ((𝑤 · 𝑎) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)))
156153, 155eqeq12d 2752 . . . . . . . . . 10 (𝑟 = 𝑏 → ((𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏))))
157 oveq1 7417 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝑤 · (𝑎 𝑏)) = (𝑐 · (𝑎 𝑏)))
158 oveq1 7417 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑎) = (𝑐 · 𝑎))
159 oveq1 7417 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑏) = (𝑐 · 𝑏))
160158, 159oveq12d 7428 . . . . . . . . . . 11 (𝑤 = 𝑐 → ((𝑤 · 𝑎) + (𝑤 · 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
161157, 160eqeq12d 2752 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)) ↔ (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
162151, 156, 161rspc3v 3622 . . . . . . . . 9 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
163146, 162syl5com 31 . . . . . . . 8 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
164144, 163sylbi 217 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
165143, 164syl 17 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
1661653ad2ant3 1135 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
16728, 166ax-mp 5 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
16833a1i 11 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
169 oveq12 7419 . . . . . . 7 ((𝑣 = 𝑐𝑠 = (𝑎 𝑏)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
170169ancoms 458 . . . . . 6 ((𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
171170adantl 481 . . . . 5 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
17230, 43grpcl 18929 . . . . . . . . . 10 ((𝐹 ∈ Grp ∧ 𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
1731723expib 1122 . . . . . . . . 9 (𝐹 ∈ Grp → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
17467, 173syl 17 . . . . . . . 8 (𝐹 ∈ Ring → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
1751743ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
17628, 175ax-mp 5 . . . . . 6 ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
1771763adant3 1132 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑏) ∈ 𝐾)
178 simp3 1138 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑐𝑉)
179 ovexd 7445 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) ∈ V)
180168, 171, 177, 178, 179ovmpod 7564 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = (𝑐 · (𝑎 𝑏)))
181133adantl 481 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
182 simp1 1136 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑎𝐾)
183 ovexd 7445 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
184168, 181, 182, 178, 183ovmpod 7564 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
185 oveq12 7419 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑏) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
186185ancoms 458 . . . . . . 7 ((𝑠 = 𝑏𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
187186adantl 481 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑏𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
188 simp2 1137 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑏𝐾)
189 ovexd 7445 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ V)
190168, 187, 188, 178, 189ovmpod 7564 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑏 𝑐) = (𝑐 · 𝑏))
191184, 190oveq12d 7428 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑐) + (𝑏 𝑐)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
192167, 180, 1913eqtr4d 2781 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
193192adantl 481 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
194 rmodislmod.s . . 3 · = ( ·𝑠𝑅)
1951, 16, 194, 24, 30, 43, 45, 47, 28, 33, 7rmodislmodlem 20891 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
19633a1i 11 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
197 oveq12 7419 . . . . . 6 ((𝑣 = 𝑎𝑠 = 1 ) → (𝑣 · 𝑠) = (𝑎 · 1 ))
198197ancoms 458 . . . . 5 ((𝑠 = 1𝑣 = 𝑎) → (𝑣 · 𝑠) = (𝑎 · 1 ))
199198adantl 481 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝑉) ∧ (𝑠 = 1𝑣 = 𝑎)) → (𝑣 · 𝑠) = (𝑎 · 1 ))
20030, 47ringidcl 20230 . . . . . 6 (𝐹 ∈ Ring → 1𝐾)
20149, 200syl 17 . . . . 5 (𝐹 ∈ CRing → 1𝐾)
202201adantr 480 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 1𝐾)
203 simpr 484 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 𝑎𝑉)
204 ovexd 7445 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) ∈ V)
205196, 199, 202, 203, 204ovmpod 7564 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = (𝑎 · 1 ))
206 simprr 772 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 1 ) = 𝑤)
2072062ralimi 3111 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
2082072ralimi 3111 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
209 rspn0 4336 . . . . . . 7 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
21071, 209ax-mp 5 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
211 rspn0 4336 . . . . . . 7 (𝐾 ≠ ∅ → (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
21271, 211ax-mp 5 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
213 rspn0 4336 . . . . . . . 8 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑤𝑉 (𝑤 · 1 ) = 𝑤))
21477, 213ax-mp 5 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑤𝑉 (𝑤 · 1 ) = 𝑤)
215 oveq1 7417 . . . . . . . . . 10 (𝑤 = 𝑎 → (𝑤 · 1 ) = (𝑎 · 1 ))
216 id 22 . . . . . . . . . 10 (𝑤 = 𝑎𝑤 = 𝑎)
217215, 216eqeq12d 2752 . . . . . . . . 9 (𝑤 = 𝑎 → ((𝑤 · 1 ) = 𝑤 ↔ (𝑎 · 1 ) = 𝑎))
218217rspcv 3602 . . . . . . . 8 (𝑎𝑉 → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
219218adantl 481 . . . . . . 7 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
220214, 219syl5com 31 . . . . . 6 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
221208, 210, 212, 2204syl 19 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
2222213ad2ant3 1135 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
22328, 222ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎)
224205, 223eqtrd 2771 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = 𝑎)
22511, 19, 27, 41, 42, 44, 46, 48, 49, 55, 91, 140, 193, 195, 224islmodd 20828 1 (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  c0 4313  cop 4612  cfv 6536  (class class class)co 7410  cmpo 7412   sSet csts 17187  ndxcnx 17217  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  Grpcgrp 18921  1rcur 20146  Ringcrg 20198  CRingccrg 20199  LModclmod 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-sca 17292  df-vsca 17293  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-cmn 19768  df-mgp 20106  df-ur 20147  df-ring 20200  df-cring 20201  df-lmod 20824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator