MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmodislmod Structured version   Visualization version   GIF version

Theorem rmodislmod 19200
Description: The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to the definition df-lmod 19134 of a left module, see also islmod 19136. (Contributed by AV, 3-Dec-2021.)
Hypotheses
Ref Expression
rmodislmod.v 𝑉 = (Base‘𝑅)
rmodislmod.a + = (+g𝑅)
rmodislmod.s · = ( ·𝑠𝑅)
rmodislmod.f 𝐹 = (Scalar‘𝑅)
rmodislmod.k 𝐾 = (Base‘𝐹)
rmodislmod.p = (+g𝐹)
rmodislmod.t × = (.r𝐹)
rmodislmod.u 1 = (1r𝐹)
rmodislmod.r (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
rmodislmod.m = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
rmodislmod.l 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
Assertion
Ref Expression
rmodislmod (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Distinct variable groups:   × ,𝑞,𝑟,𝑤,𝑥   × ,𝑠,𝑣   · ,𝑞,𝑟,𝑤,𝑥   · ,𝑠,𝑣   𝐾,𝑞,𝑟,𝑥   𝐾,𝑠,𝑣   𝑉,𝑞,𝑟,𝑤,𝑥   𝑉,𝑠,𝑣   𝐹,𝑠,𝑣   1 ,𝑠,𝑣   1 ,𝑞,𝑟,𝑤,𝑥   + ,𝑞,𝑟,𝑤,𝑥   + ,𝑠,𝑣   ,𝑞,𝑟,𝑤,𝑥   ,𝑠,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐹(𝑥,𝑤,𝑟,𝑞)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐾(𝑤)   𝐿(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)

Proof of Theorem rmodislmod
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmodislmod.v . . . . 5 𝑉 = (Base‘𝑅)
2 baseid 16193 . . . . . 6 Base = Slot (Base‘ndx)
3 df-base 16138 . . . . . . . 8 Base = Slot 1
4 1nn 11287 . . . . . . . 8 1 ∈ ℕ
53, 4ndxarg 16157 . . . . . . 7 (Base‘ndx) = 1
6 1re 10293 . . . . . . . . 9 1 ∈ ℝ
7 1lt6 11463 . . . . . . . . 9 1 < 6
86, 7ltneii 10404 . . . . . . . 8 1 ≠ 6
9 vscandx 16289 . . . . . . . 8 ( ·𝑠 ‘ndx) = 6
108, 9neeqtrri 3010 . . . . . . 7 1 ≠ ( ·𝑠 ‘ndx)
115, 10eqnetri 3007 . . . . . 6 (Base‘ndx) ≠ ( ·𝑠 ‘ndx)
122, 11setsnid 16189 . . . . 5 (Base‘𝑅) = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
131, 12eqtri 2787 . . . 4 𝑉 = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
14 rmodislmod.l . . . . . 6 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
1514eqcomi 2774 . . . . 5 (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩) = 𝐿
1615fveq2i 6378 . . . 4 (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = (Base‘𝐿)
1713, 16eqtri 2787 . . 3 𝑉 = (Base‘𝐿)
1817a1i 11 . 2 (𝐹 ∈ CRing → 𝑉 = (Base‘𝐿))
19 plusgid 16251 . . . . 5 +g = Slot (+g‘ndx)
20 plusgndx 16250 . . . . . 6 (+g‘ndx) = 2
21 2re 11346 . . . . . . . 8 2 ∈ ℝ
22 2lt6 11462 . . . . . . . 8 2 < 6
2321, 22ltneii 10404 . . . . . . 7 2 ≠ 6
2423, 9neeqtrri 3010 . . . . . 6 2 ≠ ( ·𝑠 ‘ndx)
2520, 24eqnetri 3007 . . . . 5 (+g‘ndx) ≠ ( ·𝑠 ‘ndx)
2619, 25setsnid 16189 . . . 4 (+g𝑅) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
27 rmodislmod.a . . . 4 + = (+g𝑅)
2814fveq2i 6378 . . . 4 (+g𝐿) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
2926, 27, 283eqtr4i 2797 . . 3 + = (+g𝐿)
3029a1i 11 . 2 (𝐹 ∈ CRing → + = (+g𝐿))
31 scaid 16288 . . . . 5 Scalar = Slot (Scalar‘ndx)
32 scandx 16287 . . . . . 6 (Scalar‘ndx) = 5
33 5re 11361 . . . . . . . 8 5 ∈ ℝ
34 5lt6 11459 . . . . . . . 8 5 < 6
3533, 34ltneii 10404 . . . . . . 7 5 ≠ 6
3635, 9neeqtrri 3010 . . . . . 6 5 ≠ ( ·𝑠 ‘ndx)
3732, 36eqnetri 3007 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
3831, 37setsnid 16189 . . . 4 (Scalar‘𝑅) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
39 rmodislmod.f . . . 4 𝐹 = (Scalar‘𝑅)
4014fveq2i 6378 . . . 4 (Scalar‘𝐿) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
4138, 39, 403eqtr4i 2797 . . 3 𝐹 = (Scalar‘𝐿)
4241a1i 11 . 2 (𝐹 ∈ CRing → 𝐹 = (Scalar‘𝐿))
43 rmodislmod.r . . . . . 6 (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
4443simp1i 1169 . . . . 5 𝑅 ∈ Grp
45 rmodislmod.k . . . . . . 7 𝐾 = (Base‘𝐹)
4645fvexi 6389 . . . . . 6 𝐾 ∈ V
471fvexi 6389 . . . . . 6 𝑉 ∈ V
48 rmodislmod.m . . . . . . 7 = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
4948mpt2exg 7446 . . . . . 6 ((𝐾 ∈ V ∧ 𝑉 ∈ V) → ∈ V)
5046, 47, 49mp2an 683 . . . . 5 ∈ V
51 vscaid 16290 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
5251setsid 16188 . . . . 5 ((𝑅 ∈ Grp ∧ ∈ V) → = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)))
5344, 50, 52mp2an 683 . . . 4 = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
5415fveq2i 6378 . . . 4 ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = ( ·𝑠𝐿)
5553, 54eqtri 2787 . . 3 = ( ·𝑠𝐿)
5655a1i 11 . 2 (𝐹 ∈ CRing → = ( ·𝑠𝐿))
5745a1i 11 . 2 (𝐹 ∈ CRing → 𝐾 = (Base‘𝐹))
58 rmodislmod.p . . 3 = (+g𝐹)
5958a1i 11 . 2 (𝐹 ∈ CRing → = (+g𝐹))
60 rmodislmod.t . . 3 × = (.r𝐹)
6160a1i 11 . 2 (𝐹 ∈ CRing → × = (.r𝐹))
62 rmodislmod.u . . 3 1 = (1r𝐹)
6362a1i 11 . 2 (𝐹 ∈ CRing → 1 = (1r𝐹))
64 crngring 18825 . 2 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
651eqcomi 2774 . . . . . 6 (Base‘𝑅) = 𝑉
6665, 17eqtri 2787 . . . . 5 (Base‘𝑅) = (Base‘𝐿)
6726, 28eqtr4i 2790 . . . . 5 (+g𝑅) = (+g𝐿)
6866, 67grpprop 17707 . . . 4 (𝑅 ∈ Grp ↔ 𝐿 ∈ Grp)
6944, 68mpbi 221 . . 3 𝐿 ∈ Grp
7069a1i 11 . 2 (𝐹 ∈ CRing → 𝐿 ∈ Grp)
7148a1i 11 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
72 oveq12 6851 . . . . . 6 ((𝑣 = 𝑏𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
7372ancoms 450 . . . . 5 ((𝑠 = 𝑎𝑣 = 𝑏) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
7473adantl 473 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
75 simp2 1167 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑎𝐾)
76 simp3 1168 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑏𝑉)
77 ovexd 6876 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ V)
7871, 74, 75, 76, 77ovmpt2d 6986 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
79 simpl1 1242 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 𝑟) ∈ 𝑉)
80792ralimi 3100 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
81802ralimi 3100 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
82 ringgrp 18819 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
8345grpbn0 17720 . . . . . . . . . 10 (𝐹 ∈ Grp → 𝐾 ≠ ∅)
8482, 83syl 17 . . . . . . . . 9 (𝐹 ∈ Ring → 𝐾 ≠ ∅)
85843ad2ant2 1164 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝐾 ≠ ∅)
8643, 85ax-mp 5 . . . . . . 7 𝐾 ≠ ∅
87 rspn0 4098 . . . . . . 7 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
8886, 87ax-mp 5 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
89 ralcom 3245 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
901grpbn0 17720 . . . . . . . . . . 11 (𝑅 ∈ Grp → 𝑉 ≠ ∅)
91903ad2ant1 1163 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → 𝑉 ≠ ∅)
9243, 91ax-mp 5 . . . . . . . . 9 𝑉 ≠ ∅
93 rspn0 4098 . . . . . . . . 9 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
9492, 93ax-mp 5 . . . . . . . 8 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
95 oveq2 6850 . . . . . . . . . . 11 (𝑟 = 𝑎 → (𝑤 · 𝑟) = (𝑤 · 𝑎))
9695eleq1d 2829 . . . . . . . . . 10 (𝑟 = 𝑎 → ((𝑤 · 𝑟) ∈ 𝑉 ↔ (𝑤 · 𝑎) ∈ 𝑉))
97 oveq1 6849 . . . . . . . . . . 11 (𝑤 = 𝑏 → (𝑤 · 𝑎) = (𝑏 · 𝑎))
9897eleq1d 2829 . . . . . . . . . 10 (𝑤 = 𝑏 → ((𝑤 · 𝑎) ∈ 𝑉 ↔ (𝑏 · 𝑎) ∈ 𝑉))
9996, 98rspc2v 3474 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
100993adant1 1160 . . . . . . . 8 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
10194, 100syl5com 31 . . . . . . 7 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
10289, 101sylbi 208 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
10381, 88, 1023syl 18 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
1041033ad2ant3 1165 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
10543, 104ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉)
10678, 105eqeltrd 2844 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) ∈ 𝑉)
10748a1i 11 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
108 oveq12 6851 . . . . . . . 8 ((𝑣 = (𝑏 + 𝑐) ∧ 𝑠 = 𝑎) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
109108ancoms 450 . . . . . . 7 ((𝑠 = 𝑎𝑣 = (𝑏 + 𝑐)) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
110109adantl 473 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = (𝑏 + 𝑐))) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
111 simp1 1166 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑎𝐾)
1121, 27grpcl 17699 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
11344, 112mp3an1 1572 . . . . . . 7 ((𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
1141133adant1 1160 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
115 ovexd 6876 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) ∈ V)
116107, 110, 111, 114, 115ovmpt2d 6986 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 + 𝑐) · 𝑎))
117 simpl2 1244 . . . . . . . . . 10 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1181172ralimi 3100 . . . . . . . . 9 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1191182ralimi 3100 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
120 rspn0 4098 . . . . . . . . . 10 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟))))
12186, 120ax-mp 5 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
122 oveq2 6850 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 + 𝑥) · 𝑎))
123 oveq2 6850 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → (𝑥 · 𝑟) = (𝑥 · 𝑎))
12495, 123oveq12d 6860 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 · 𝑟) + (𝑥 · 𝑟)) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)))
125122, 124eqeq12d 2780 . . . . . . . . . . 11 (𝑟 = 𝑎 → (((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ↔ ((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎))))
126 oveq2 6850 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑤 + 𝑥) = (𝑤 + 𝑐))
127126oveq1d 6857 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 + 𝑥) · 𝑎) = ((𝑤 + 𝑐) · 𝑎))
128 oveq1 6849 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑥 · 𝑎) = (𝑐 · 𝑎))
129128oveq2d 6858 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 · 𝑎) + (𝑥 · 𝑎)) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)))
130127, 129eqeq12d 2780 . . . . . . . . . . 11 (𝑥 = 𝑐 → (((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)) ↔ ((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎))))
131 oveq1 6849 . . . . . . . . . . . . 13 (𝑤 = 𝑏 → (𝑤 + 𝑐) = (𝑏 + 𝑐))
132131oveq1d 6857 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 + 𝑐) · 𝑎) = ((𝑏 + 𝑐) · 𝑎))
13397oveq1d 6857 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 · 𝑎) + (𝑐 · 𝑎)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
134132, 133eqeq12d 2780 . . . . . . . . . . 11 (𝑤 = 𝑏 → (((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)) ↔ ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
135125, 130, 134rspc3v 3477 . . . . . . . . . 10 ((𝑎𝐾𝑐𝑉𝑏𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1361353com23 1156 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
137121, 136syl5com 31 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
138119, 137syl 17 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1391383ad2ant3 1165 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
14043, 139ax-mp 5 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
141116, 140eqtrd 2799 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
142141adantl 473 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
14373adantl 473 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
144 simp2 1167 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑏𝑉)
145 ovexd 6876 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 · 𝑎) ∈ V)
146107, 143, 111, 144, 145ovmpt2d 6986 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
147 oveq12 6851 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
148147ancoms 450 . . . . . . 7 ((𝑠 = 𝑎𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
149148adantl 473 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
150 simp3 1168 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑐𝑉)
151 ovexd 6876 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
152107, 149, 111, 150, 151ovmpt2d 6986 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
153146, 152oveq12d 6860 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
154153adantl 473 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
155142, 154eqtr4d 2802 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑎 𝑏) + (𝑎 𝑐)))
156 simpl3 1246 . . . . . . . . 9 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1571562ralimi 3100 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1581572ralimi 3100 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
159 ralrot3 3249 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
160 rspn0 4098 . . . . . . . . . 10 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))))
16192, 160ax-mp 5 . . . . . . . . 9 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
162 oveq1 6849 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑞 𝑟) = (𝑎 𝑟))
163162oveq2d 6858 . . . . . . . . . . 11 (𝑞 = 𝑎 → (𝑤 · (𝑞 𝑟)) = (𝑤 · (𝑎 𝑟)))
164 oveq2 6850 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑤 · 𝑞) = (𝑤 · 𝑎))
165164oveq1d 6857 . . . . . . . . . . 11 (𝑞 = 𝑎 → ((𝑤 · 𝑞) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)))
166163, 165eqeq12d 2780 . . . . . . . . . 10 (𝑞 = 𝑎 → ((𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟))))
167 oveq2 6850 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑎 𝑟) = (𝑎 𝑏))
168167oveq2d 6858 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝑤 · (𝑎 𝑟)) = (𝑤 · (𝑎 𝑏)))
169 oveq2 6850 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑤 · 𝑟) = (𝑤 · 𝑏))
170169oveq2d 6858 . . . . . . . . . . 11 (𝑟 = 𝑏 → ((𝑤 · 𝑎) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)))
171168, 170eqeq12d 2780 . . . . . . . . . 10 (𝑟 = 𝑏 → ((𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏))))
172 oveq1 6849 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝑤 · (𝑎 𝑏)) = (𝑐 · (𝑎 𝑏)))
173 oveq1 6849 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑎) = (𝑐 · 𝑎))
174 oveq1 6849 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑏) = (𝑐 · 𝑏))
175173, 174oveq12d 6860 . . . . . . . . . . 11 (𝑤 = 𝑐 → ((𝑤 · 𝑎) + (𝑤 · 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
176172, 175eqeq12d 2780 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)) ↔ (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
177166, 171, 176rspc3v 3477 . . . . . . . . 9 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
178161, 177syl5com 31 . . . . . . . 8 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
179159, 178sylbi 208 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
180158, 179syl 17 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
1811803ad2ant3 1165 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
18243, 181ax-mp 5 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
18348a1i 11 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
184 oveq12 6851 . . . . . . 7 ((𝑣 = 𝑐𝑠 = (𝑎 𝑏)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
185184ancoms 450 . . . . . 6 ((𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
186185adantl 473 . . . . 5 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
18745, 58grpcl 17699 . . . . . . . . . 10 ((𝐹 ∈ Grp ∧ 𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
1881873expib 1152 . . . . . . . . 9 (𝐹 ∈ Grp → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
18982, 188syl 17 . . . . . . . 8 (𝐹 ∈ Ring → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
1901893ad2ant2 1164 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
19143, 190ax-mp 5 . . . . . 6 ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
1921913adant3 1162 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑏) ∈ 𝐾)
193 simp3 1168 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑐𝑉)
194 ovexd 6876 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) ∈ V)
195183, 186, 192, 193, 194ovmpt2d 6986 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = (𝑐 · (𝑎 𝑏)))
196148adantl 473 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
197 simp1 1166 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑎𝐾)
198 ovexd 6876 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
199183, 196, 197, 193, 198ovmpt2d 6986 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
200 oveq12 6851 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑏) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
201200ancoms 450 . . . . . . 7 ((𝑠 = 𝑏𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
202201adantl 473 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑏𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
203 simp2 1167 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑏𝐾)
204 ovexd 6876 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ V)
205183, 202, 203, 193, 204ovmpt2d 6986 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑏 𝑐) = (𝑐 · 𝑏))
206199, 205oveq12d 6860 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑐) + (𝑏 𝑐)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
207182, 195, 2063eqtr4d 2809 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
208207adantl 473 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
209 rmodislmod.s . . 3 · = ( ·𝑠𝑅)
2101, 27, 209, 39, 45, 58, 60, 62, 43, 48, 14rmodislmodlem 19199 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
21148a1i 11 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
212 oveq12 6851 . . . . . 6 ((𝑣 = 𝑎𝑠 = 1 ) → (𝑣 · 𝑠) = (𝑎 · 1 ))
213212ancoms 450 . . . . 5 ((𝑠 = 1𝑣 = 𝑎) → (𝑣 · 𝑠) = (𝑎 · 1 ))
214213adantl 473 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝑉) ∧ (𝑠 = 1𝑣 = 𝑎)) → (𝑣 · 𝑠) = (𝑎 · 1 ))
21545, 62ringidcl 18835 . . . . . 6 (𝐹 ∈ Ring → 1𝐾)
21664, 215syl 17 . . . . 5 (𝐹 ∈ CRing → 1𝐾)
217216adantr 472 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 1𝐾)
218 simpr 477 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 𝑎𝑉)
219 ovexd 6876 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) ∈ V)
220211, 214, 217, 218, 219ovmpt2d 6986 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = (𝑎 · 1 ))
221 simprr 789 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 1 ) = 𝑤)
2222212ralimi 3100 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
2232222ralimi 3100 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
224 rspn0 4098 . . . . . . 7 (𝐾 ≠ ∅ → (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
22586, 224ax-mp 5 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
226 rspn0 4098 . . . . . . . 8 (𝐾 ≠ ∅ → (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
22786, 226ax-mp 5 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
228 rspn0 4098 . . . . . . . . 9 (𝑉 ≠ ∅ → (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑤𝑉 (𝑤 · 1 ) = 𝑤))
22992, 228ax-mp 5 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑤𝑉 (𝑤 · 1 ) = 𝑤)
230 oveq1 6849 . . . . . . . . . . 11 (𝑤 = 𝑎 → (𝑤 · 1 ) = (𝑎 · 1 ))
231 id 22 . . . . . . . . . . 11 (𝑤 = 𝑎𝑤 = 𝑎)
232230, 231eqeq12d 2780 . . . . . . . . . 10 (𝑤 = 𝑎 → ((𝑤 · 1 ) = 𝑤 ↔ (𝑎 · 1 ) = 𝑎))
233232rspcv 3457 . . . . . . . . 9 (𝑎𝑉 → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
234233adantl 473 . . . . . . . 8 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
235229, 234syl5com 31 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
236227, 235syl 17 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
237223, 225, 2363syl 18 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
2382373ad2ant3 1165 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
23943, 238ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎)
240220, 239eqtrd 2799 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = 𝑎)
24118, 30, 42, 56, 57, 59, 61, 63, 64, 70, 106, 155, 208, 210, 240islmodd 19138 1 (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  Vcvv 3350  c0 4079  cop 4340  cfv 6068  (class class class)co 6842  cmpt2 6844  1c1 10190  2c2 11327  5c5 11330  6c6 11331  ndxcnx 16129   sSet csts 16130  Basecbs 16132  +gcplusg 16216  .rcmulr 16217  Scalarcsca 16219   ·𝑠 cvsca 16220  Grpcgrp 17691  1rcur 18768  Ringcrg 18814  CRingccrg 18815  LModclmod 19132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-plusg 16229  df-sca 16232  df-vsca 16233  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-cmn 18461  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-lmod 19134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator