Step | Hyp | Ref
| Expression |
1 | | fvexd 6907 |
. . . 4
β’ (π€ = π β (Scalarβπ€) β V) |
2 | | fvexd 6907 |
. . . . 5
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ) β V) |
3 | | id 22 |
. . . . . . . . 9
β’ (π = (Scalarβπ€) β π = (Scalarβπ€)) |
4 | | fveq2 6892 |
. . . . . . . . . 10
β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) |
5 | | isclm.f |
. . . . . . . . . 10
β’ πΉ = (Scalarβπ) |
6 | 4, 5 | eqtr4di 2791 |
. . . . . . . . 9
β’ (π€ = π β (Scalarβπ€) = πΉ) |
7 | 3, 6 | sylan9eqr 2795 |
. . . . . . . 8
β’ ((π€ = π β§ π = (Scalarβπ€)) β π = πΉ) |
8 | 7 | adantr 482 |
. . . . . . 7
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β π = πΉ) |
9 | | id 22 |
. . . . . . . . 9
β’ (π = (Baseβπ) β π = (Baseβπ)) |
10 | 7 | fveq2d 6896 |
. . . . . . . . . 10
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ) = (BaseβπΉ)) |
11 | | isclm.k |
. . . . . . . . . 10
β’ πΎ = (BaseβπΉ) |
12 | 10, 11 | eqtr4di 2791 |
. . . . . . . . 9
β’ ((π€ = π β§ π = (Scalarβπ€)) β (Baseβπ) = πΎ) |
13 | 9, 12 | sylan9eqr 2795 |
. . . . . . . 8
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β π = πΎ) |
14 | 13 | oveq2d 7425 |
. . . . . . 7
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (βfld
βΎs π) =
(βfld βΎs πΎ)) |
15 | 8, 14 | eqeq12d 2749 |
. . . . . 6
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (π = (βfld βΎs
π) β πΉ = (βfld
βΎs πΎ))) |
16 | 13 | eleq1d 2819 |
. . . . . 6
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β (π β (SubRingββfld)
β πΎ β
(SubRingββfld))) |
17 | 15, 16 | anbi12d 632 |
. . . . 5
β’ (((π€ = π β§ π = (Scalarβπ€)) β§ π = (Baseβπ)) β ((π = (βfld βΎs
π) β§ π β
(SubRingββfld)) β (πΉ = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)))) |
18 | 2, 17 | sbcied 3823 |
. . . 4
β’ ((π€ = π β§ π = (Scalarβπ€)) β ([(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld)) β (πΉ = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)))) |
19 | 1, 18 | sbcied 3823 |
. . 3
β’ (π€ = π β ([(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld)) β (πΉ = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)))) |
20 | | df-clm 24579 |
. . 3
β’
βMod = {π€
β LMod β£ [(Scalarβπ€) / π][(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld))} |
21 | 19, 20 | elrab2 3687 |
. 2
β’ (π β βMod β (π β LMod β§ (πΉ = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)))) |
22 | | 3anass 1096 |
. 2
β’ ((π β LMod β§ πΉ = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)) β (π β LMod β§ (πΉ = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld)))) |
23 | 21, 22 | bitr4i 278 |
1
β’ (π β βMod β (π β LMod β§ πΉ = (βfld
βΎs πΎ)
β§ πΎ β
(SubRingββfld))) |