MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclm Structured version   Visualization version   GIF version

Theorem isclm 24971
Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isclm (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem isclm
Dummy variables 𝑓 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6876 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
2 fvexd 6876 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V)
3 id 22 . . . . . . . . 9 (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤))
4 fveq2 6861 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
5 isclm.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
64, 5eqtr4di 2783 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
73, 6sylan9eqr 2787 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹)
87adantr 480 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹)
9 id 22 . . . . . . . . 9 (𝑘 = (Base‘𝑓) → 𝑘 = (Base‘𝑓))
107fveq2d 6865 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹))
11 isclm.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
1210, 11eqtr4di 2783 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾)
139, 12sylan9eqr 2787 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾)
1413oveq2d 7406 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂflds 𝑘) = (ℂflds 𝐾))
158, 14eqeq12d 2746 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂflds 𝑘) ↔ 𝐹 = (ℂflds 𝐾)))
1613eleq1d 2814 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∈ (SubRing‘ℂfld) ↔ 𝐾 ∈ (SubRing‘ℂfld)))
1715, 16anbi12d 632 . . . . 5 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
182, 17sbcied 3800 . . . 4 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
191, 18sbcied 3800 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
20 df-clm 24970 . . 3 ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
2119, 20elrab2 3665 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
22 3anass 1094 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
2321, 22bitr4i 278 1 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  [wsbc 3756  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  Scalarcsca 17230  SubRingcsubrg 20485  LModclmod 20773  fldccnfld 21271  ℂModcclm 24969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-clm 24970
This theorem is referenced by:  clmsca  24972  clmsubrg  24973  clmlmod  24974  isclmi  24984  lmhmclm  24994  isclmp  25004  cphclm  25096  phclm  25139  bj-isclm  37286
  Copyright terms: Public domain W3C validator