MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclm Structured version   Visualization version   GIF version

Theorem isclm 24580
Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalarβ€˜π‘Š)
isclm.k 𝐾 = (Baseβ€˜πΉ)
Assertion
Ref Expression
isclm (π‘Š ∈ β„‚Mod ↔ (π‘Š ∈ LMod ∧ 𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld)))

Proof of Theorem isclm
Dummy variables 𝑓 π‘˜ 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6907 . . . 4 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) ∈ V)
2 fvexd 6907 . . . . 5 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘“) ∈ V)
3 id 22 . . . . . . . . 9 (𝑓 = (Scalarβ€˜π‘€) β†’ 𝑓 = (Scalarβ€˜π‘€))
4 fveq2 6892 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
5 isclm.f . . . . . . . . . 10 𝐹 = (Scalarβ€˜π‘Š)
64, 5eqtr4di 2791 . . . . . . . . 9 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
73, 6sylan9eqr 2795 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ 𝑓 = 𝐹)
87adantr 482 . . . . . . 7 (((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) ∧ π‘˜ = (Baseβ€˜π‘“)) β†’ 𝑓 = 𝐹)
9 id 22 . . . . . . . . 9 (π‘˜ = (Baseβ€˜π‘“) β†’ π‘˜ = (Baseβ€˜π‘“))
107fveq2d 6896 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΉ))
11 isclm.k . . . . . . . . . 10 𝐾 = (Baseβ€˜πΉ)
1210, 11eqtr4di 2791 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ (Baseβ€˜π‘“) = 𝐾)
139, 12sylan9eqr 2795 . . . . . . . 8 (((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) ∧ π‘˜ = (Baseβ€˜π‘“)) β†’ π‘˜ = 𝐾)
1413oveq2d 7425 . . . . . . 7 (((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) ∧ π‘˜ = (Baseβ€˜π‘“)) β†’ (β„‚fld β†Ύs π‘˜) = (β„‚fld β†Ύs 𝐾))
158, 14eqeq12d 2749 . . . . . 6 (((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) ∧ π‘˜ = (Baseβ€˜π‘“)) β†’ (𝑓 = (β„‚fld β†Ύs π‘˜) ↔ 𝐹 = (β„‚fld β†Ύs 𝐾)))
1613eleq1d 2819 . . . . . 6 (((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) ∧ π‘˜ = (Baseβ€˜π‘“)) β†’ (π‘˜ ∈ (SubRingβ€˜β„‚fld) ↔ 𝐾 ∈ (SubRingβ€˜β„‚fld)))
1715, 16anbi12d 632 . . . . 5 (((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) ∧ π‘˜ = (Baseβ€˜π‘“)) β†’ ((𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld)) ↔ (𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld))))
182, 17sbcied 3823 . . . 4 ((𝑀 = π‘Š ∧ 𝑓 = (Scalarβ€˜π‘€)) β†’ ([(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld)) ↔ (𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld))))
191, 18sbcied 3823 . . 3 (𝑀 = π‘Š β†’ ([(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld)) ↔ (𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld))))
20 df-clm 24579 . . 3 β„‚Mod = {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
2119, 20elrab2 3687 . 2 (π‘Š ∈ β„‚Mod ↔ (π‘Š ∈ LMod ∧ (𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld))))
22 3anass 1096 . 2 ((π‘Š ∈ LMod ∧ 𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld)) ↔ (π‘Š ∈ LMod ∧ (𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld))))
2321, 22bitr4i 278 1 (π‘Š ∈ β„‚Mod ↔ (π‘Š ∈ LMod ∧ 𝐹 = (β„‚fld β†Ύs 𝐾) ∧ 𝐾 ∈ (SubRingβ€˜β„‚fld)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3475  [wsbc 3778  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144   β†Ύs cress 17173  Scalarcsca 17200  SubRingcsubrg 20315  LModclmod 20471  β„‚fldccnfld 20944  β„‚Modcclm 24578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-clm 24579
This theorem is referenced by:  clmsca  24581  clmsubrg  24582  clmlmod  24583  isclmi  24593  lmhmclm  24603  isclmp  24613  cphclm  24706  phclm  24749  bj-isclm  36172
  Copyright terms: Public domain W3C validator