MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclm Structured version   Visualization version   GIF version

Theorem isclm 25097
Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isclm (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem isclm
Dummy variables 𝑓 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6921 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
2 fvexd 6921 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V)
3 id 22 . . . . . . . . 9 (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤))
4 fveq2 6906 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
5 isclm.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
64, 5eqtr4di 2795 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
73, 6sylan9eqr 2799 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹)
87adantr 480 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹)
9 id 22 . . . . . . . . 9 (𝑘 = (Base‘𝑓) → 𝑘 = (Base‘𝑓))
107fveq2d 6910 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹))
11 isclm.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
1210, 11eqtr4di 2795 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾)
139, 12sylan9eqr 2799 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾)
1413oveq2d 7447 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂflds 𝑘) = (ℂflds 𝐾))
158, 14eqeq12d 2753 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂflds 𝑘) ↔ 𝐹 = (ℂflds 𝐾)))
1613eleq1d 2826 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∈ (SubRing‘ℂfld) ↔ 𝐾 ∈ (SubRing‘ℂfld)))
1715, 16anbi12d 632 . . . . 5 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
182, 17sbcied 3832 . . . 4 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
191, 18sbcied 3832 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
20 df-clm 25096 . . 3 ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
2119, 20elrab2 3695 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
22 3anass 1095 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
2321, 22bitr4i 278 1 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  [wsbc 3788  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  Scalarcsca 17300  SubRingcsubrg 20569  LModclmod 20858  fldccnfld 21364  ℂModcclm 25095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-clm 25096
This theorem is referenced by:  clmsca  25098  clmsubrg  25099  clmlmod  25100  isclmi  25110  lmhmclm  25120  isclmp  25130  cphclm  25223  phclm  25266  bj-isclm  37292
  Copyright terms: Public domain W3C validator