| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvexd 6921 | . . . 4
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V) | 
| 2 |  | fvexd 6921 | . . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V) | 
| 3 |  | id 22 | . . . . . . . . 9
⊢ (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤)) | 
| 4 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | 
| 5 |  | isclm.f | . . . . . . . . . 10
⊢ 𝐹 = (Scalar‘𝑊) | 
| 6 | 4, 5 | eqtr4di 2795 | . . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) | 
| 7 | 3, 6 | sylan9eqr 2799 | . . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹) | 
| 9 |  | id 22 | . . . . . . . . 9
⊢ (𝑘 = (Base‘𝑓) → 𝑘 = (Base‘𝑓)) | 
| 10 | 7 | fveq2d 6910 | . . . . . . . . . 10
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹)) | 
| 11 |  | isclm.k | . . . . . . . . . 10
⊢ 𝐾 = (Base‘𝐹) | 
| 12 | 10, 11 | eqtr4di 2795 | . . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾) | 
| 13 | 9, 12 | sylan9eqr 2799 | . . . . . . . 8
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾) | 
| 14 | 13 | oveq2d 7447 | . . . . . . 7
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂfld
↾s 𝑘) =
(ℂfld ↾s 𝐾)) | 
| 15 | 8, 14 | eqeq12d 2753 | . . . . . 6
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂfld ↾s
𝑘) ↔ 𝐹 = (ℂfld
↾s 𝐾))) | 
| 16 | 13 | eleq1d 2826 | . . . . . 6
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∈ (SubRing‘ℂfld)
↔ 𝐾 ∈
(SubRing‘ℂfld))) | 
| 17 | 15, 16 | anbi12d 632 | . . . . 5
⊢ (((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld)) ↔ (𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)))) | 
| 18 | 2, 17 | sbcied 3832 | . . . 4
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld)) ↔ (𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)))) | 
| 19 | 1, 18 | sbcied 3832 | . . 3
⊢ (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld)) ↔ (𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)))) | 
| 20 |  | df-clm 25096 | . . 3
⊢
ℂMod = {𝑤
∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld))} | 
| 21 | 19, 20 | elrab2 3695 | . 2
⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)))) | 
| 22 |  | 3anass 1095 | . 2
⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)) ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld)))) | 
| 23 | 21, 22 | bitr4i 278 | 1
⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 ∈
(SubRing‘ℂfld))) |