Detailed syntax breakdown of Definition df-cm
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ccm 30956 | . 2
class 
𝐶ℋ | 
| 2 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 3 | 2 | cv 1538 | . . . . . 6
class 𝑥 | 
| 4 |  | cch 30949 | . . . . . 6
class 
Cℋ | 
| 5 | 3, 4 | wcel 2107 | . . . . 5
wff 𝑥 ∈
Cℋ | 
| 6 |  | vy | . . . . . . 7
setvar 𝑦 | 
| 7 | 6 | cv 1538 | . . . . . 6
class 𝑦 | 
| 8 | 7, 4 | wcel 2107 | . . . . 5
wff 𝑦 ∈
Cℋ | 
| 9 | 5, 8 | wa 395 | . . . 4
wff (𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ
) | 
| 10 | 3, 7 | cin 3949 | . . . . . 6
class (𝑥 ∩ 𝑦) | 
| 11 |  | cort 30950 | . . . . . . . 8
class
⊥ | 
| 12 | 7, 11 | cfv 6560 | . . . . . . 7
class
(⊥‘𝑦) | 
| 13 | 3, 12 | cin 3949 | . . . . . 6
class (𝑥 ∩ (⊥‘𝑦)) | 
| 14 |  | chj 30953 | . . . . . 6
class 
∨ℋ | 
| 15 | 10, 13, 14 | co 7432 | . . . . 5
class ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) | 
| 16 | 3, 15 | wceq 1539 | . . . 4
wff 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) | 
| 17 | 9, 16 | wa 395 | . . 3
wff ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦)))) | 
| 18 | 17, 2, 6 | copab 5204 | . 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} | 
| 19 | 1, 18 | wceq 1539 | 1
wff 
𝐶ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |