Step | Hyp | Ref
| Expression |
1 | | ccm 30177 |
. 2
class
𝐶ℋ |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | 2 | cv 1541 |
. . . . . 6
class 𝑥 |
4 | | cch 30170 |
. . . . . 6
class
Cℋ |
5 | 3, 4 | wcel 2107 |
. . . . 5
wff 𝑥 ∈
Cℋ |
6 | | vy |
. . . . . . 7
setvar 𝑦 |
7 | 6 | cv 1541 |
. . . . . 6
class 𝑦 |
8 | 7, 4 | wcel 2107 |
. . . . 5
wff 𝑦 ∈
Cℋ |
9 | 5, 8 | wa 397 |
. . . 4
wff (𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ
) |
10 | 3, 7 | cin 3947 |
. . . . . 6
class (𝑥 ∩ 𝑦) |
11 | | cort 30171 |
. . . . . . . 8
class
⊥ |
12 | 7, 11 | cfv 6541 |
. . . . . . 7
class
(⊥‘𝑦) |
13 | 3, 12 | cin 3947 |
. . . . . 6
class (𝑥 ∩ (⊥‘𝑦)) |
14 | | chj 30174 |
. . . . . 6
class
∨ℋ |
15 | 10, 13, 14 | co 7406 |
. . . . 5
class ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) |
16 | 3, 15 | wceq 1542 |
. . . 4
wff 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) |
17 | 9, 16 | wa 397 |
. . 3
wff ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦)))) |
18 | 17, 2, 6 | copab 5210 |
. 2
class
{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |
19 | 1, 18 | wceq 1542 |
1
wff
𝐶ℋ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |