Home | Metamath
Proof Explorer Theorem List (p. 313 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-xdiv 31201* | Define division over extended real numbers. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ /𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) | ||
Theorem | xdivval 31202* | Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) | ||
Theorem | xrecex 31203* | Existence of reciprocal of nonzero real number. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 ·e 𝑥) = 1) | ||
Theorem | xmulcand 31204 | Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | xreceu 31205* | Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) | ||
Theorem | xdivcld 31206 | Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ*) | ||
Theorem | xdivcl 31207 | Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) ∈ ℝ*) | ||
Theorem | xdivmul 31208 | Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴)) | ||
Theorem | rexdiv 31209 | The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵)) | ||
Theorem | xdivrec 31210 | Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵))) | ||
Theorem | xdivid 31211 | A number divided by itself is one. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 /𝑒 𝐴) = 1) | ||
Theorem | xdiv0 31212 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 /𝑒 𝐴) = 0) | ||
Theorem | xdiv0rp 31213 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ+ → (0 /𝑒 𝐴) = 0) | ||
Theorem | eliccioo 31214 | Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) | ||
Theorem | elxrge02 31215 | Elementhood in the set of nonnegative extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) | ||
Theorem | xdivpnfrp 31216 | Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) | ||
Theorem | rpxdivcld 31217 | Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ+) | ||
Theorem | xrpxdivcld 31218 | Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | wrdfd 31219 | A word is a zero-based sequence with a recoverable upper limit, deduction version. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ (𝜑 → 𝑁 = (♯‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) ⇒ ⊢ (𝜑 → 𝑊:(0..^𝑁)⟶𝑆) | ||
Theorem | wrdres 31220 | Condition for the restriction of a word to be a word itself. (Contributed by Thierry Arnoux, 5-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ↾ (0..^𝑁)) ∈ Word 𝑆) | ||
Theorem | wrdsplex 31221* | Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) | ||
Theorem | pfx1s2 31222 | The prefix of length 1 of a length 2 word. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝐵”〉 prefix 1) = 〈“𝐴”〉) | ||
Theorem | pfxrn2 31223 | The range of a prefix of a word is a subset of the range of that word. Stronger version of pfxrn 14407. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) ⊆ ran 𝑊) | ||
Theorem | pfxrn3 31224 | Express the range of a prefix of a word. Stronger version of pfxrn2 31223. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) = (𝑊 “ (0..^𝐿))) | ||
Theorem | pfxf1 31225 | Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) & ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) ⇒ ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) | ||
Theorem | s1f1 31226 | Conditions for a length 1 string to be a one-to-one function. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) ⇒ ⊢ (𝜑 → 〈“𝐼”〉:dom 〈“𝐼”〉–1-1→𝐷) | ||
Theorem | s2rn 31227 | Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) ⇒ ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) | ||
Theorem | s2f1 31228 | Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) ⇒ ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) | ||
Theorem | s3rn 31229 | Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) ⇒ ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) | ||
Theorem | s3f1 31230 | Conditions for a length 3 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) | ||
Theorem | s3clhash 31231 | Closure of the words of length 3 in a preimage using the hash function. (Contributed by Thierry Arnoux, 27-Sep-2023.) |
⊢ 〈“𝐼𝐽𝐾”〉 ∈ (◡♯ “ {3}) | ||
Theorem | ccatf1 31232 | Conditions for a concatenation to be injective. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐴:dom 𝐴–1-1→𝑆) & ⊢ (𝜑 → 𝐵:dom 𝐵–1-1→𝑆) & ⊢ (𝜑 → (ran 𝐴 ∩ ran 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)–1-1→𝑆) | ||
Theorem | pfxlsw2ccat 31233 | Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
⊢ 𝑁 = (♯‘𝑊) ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉)) | ||
Theorem | wrdt2ind 31234* | Perform an induction over the structure of a word of even length. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ++ 〈“𝑖𝑗”〉) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝐴 ∈ Word 𝐵 ∧ 2 ∥ (♯‘𝐴)) → 𝜏) | ||
Theorem | swrdrn2 31235 | The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14374. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) ⊆ ran 𝑊) | ||
Theorem | swrdrn3 31236 | Express the range of a subword. Stronger version of swrdrn2 31235. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) | ||
Theorem | swrdf1 31237 | Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑊 substr 〈𝑀, 𝑁〉):dom (𝑊 substr 〈𝑀, 𝑁〉)–1-1→𝐷) | ||
Theorem | swrdrndisj 31238 | Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) & ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) & ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) ⇒ ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) | ||
Theorem | splfv3 31239 | Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.) |
⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑅 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) & ⊢ (𝜑 → 𝐾 = (𝐹 + (♯‘𝑅))) ⇒ ⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇))) | ||
Theorem | 1cshid 31240 | Cyclically shifting a single letter word keeps it unchanged. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊) | ||
Theorem | cshw1s2 31241 | Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝐵”〉 cyclShift 1) = 〈“𝐵𝐴”〉) | ||
Theorem | cshwrnid 31242 | Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) | ||
Theorem | cshf1o 31243 | Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.) |
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) | ||
Theorem | ressplusf 31244 | The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ ⨣ = (+g‘𝐺) & ⊢ ⨣ Fn (𝐵 × 𝐵) & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) | ||
Theorem | ressnm 31245 | The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) | ||
Theorem | abvpropd2 31246 | Weaker version of abvpropd 20111. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) & ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐿)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
Theorem | oppgle 31247 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ ≤ = (le‘𝑂) | ||
Theorem | oppgleOLD 31248 | Obsolete version of oppgle 31247 as of 27-Oct-2024. less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ ≤ = (le‘𝑂) | ||
Theorem | oppglt 31249 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ < = (lt‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → < = (lt‘𝑂)) | ||
Theorem | ressprs 31250 | The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) | ||
Theorem | oduprs 31251 | Being a proset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset → 𝐷 ∈ Proset ) | ||
Theorem | posrasymb 31252 | A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
Theorem | resspos 31253 | The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) | ||
Theorem | resstos 31254 | The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Toset) | ||
Theorem | odutos 31255 | Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Toset) | ||
Theorem | tlt2 31256 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) | ||
Theorem | tlt3 31257 | In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) | ||
Theorem | trleile 31258 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) | ||
Theorem | toslublem 31259* | Lemma for toslub 31260 and xrsclat 31298. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) | ||
Theorem | toslub 31260 | In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) | ||
Theorem | tosglblem 31261* | Lemma for tosglb 31262 and xrsclat 31298. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) | ||
Theorem | tosglb 31262 | Same theorem as toslub 31260, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) | ||
Theorem | clatp0cl 31263 | The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 0 ∈ 𝐵) | ||
Theorem | clatp1cl 31264 | The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 1 = (1.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) | ||
Syntax | cmnt 31265 | Extend class notation with monotone functions. |
class Monot | ||
Syntax | cmgc 31266 | Extend class notation with the monotone Galois connection. |
class MGalConn | ||
Definition | df-mnt 31267* | Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
⊢ Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) | ||
Definition | df-mgc 31268* | Define monotone Galois connections. See mgcval 31274 for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
⊢ MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) | ||
Theorem | mntoval 31269* | Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | ||
Theorem | ismnt 31270* | Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) | ||
Theorem | ismntd 31271 | Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
Theorem | mntf 31272 | A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴⟶𝐵) | ||
Theorem | mgcoval 31273* | Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | ||
Theorem | mgcval 31274* |
Monotone Galois connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) | ||
Theorem | mgcf1 31275 | The lower adjoint 𝐹 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
Theorem | mgcf2 31276 | The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
Theorem | mgccole1 31277 | An inequality for the kernel operator 𝐺 ∘ 𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) | ||
Theorem | mgccole2 31278 | Inequality for the closure operator (𝐹 ∘ 𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) | ||
Theorem | mgcmnt1 31279 | The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
Theorem | mgcmnt2 31280 | The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≲ 𝑌) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≤ (𝐺‘𝑌)) | ||
Theorem | mgcmntco 31281* | A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ < = (le‘𝑋) & ⊢ (𝜑 → 𝑋 ∈ Proset ) & ⊢ (𝜑 → 𝐾 ∈ (𝑉Monot𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (𝑊Monot𝑋)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦))) | ||
Theorem | dfmgc2lem 31282* | Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) & ⊢ (𝜑 → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ⇒ ⊢ (𝜑 → 𝐹𝐻𝐺) | ||
Theorem | dfmgc2 31283* | Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) | ||
Theorem | mgcmnt1d 31284 | Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | ||
Theorem | mgcmnt2d 31285 | Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) | ||
Theorem | mgccnv 31286 | The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) ⇒ ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) | ||
Theorem | pwrssmgc 31287* | Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (◡𝐹 “ 𝑛)) & ⊢ 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚}) & ⊢ 𝑉 = (toInc‘𝒫 𝑌) & ⊢ 𝑊 = (toInc‘𝒫 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → 𝐺(𝑉MGalConn𝑊)𝐻) | ||
Theorem | mgcf1olem1 31288 | Property of a Galois connection, lemma for mgcf1o 31290. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) | ||
Theorem | mgcf1olem2 31289 | Property of a Galois connection, lemma for mgcf1o 31290. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) | ||
Theorem | mgcf1o 31290 | Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) Isom ≤ , ≲ (ran 𝐺, ran 𝐹)) | ||
Axiom | ax-xrssca 31291 | Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ℝfld = (Scalar‘ℝ*𝑠) | ||
Axiom | ax-xrsvsca 31292 | Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ·e = ( ·𝑠 ‘ℝ*𝑠) | ||
Theorem | xrs0 31293 | The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 12992 and df-xrs 17222), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ 0 = (0g‘ℝ*𝑠) | ||
Theorem | xrslt 31294 | The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ < = (lt‘ℝ*𝑠) | ||
Theorem | xrsinvgval 31295 | The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 12992 and df-xrs 17222), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) | ||
Theorem | xrsmulgzz 31296 | The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | ||
Theorem | xrstos 31297 | The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
⊢ ℝ*𝑠 ∈ Toset | ||
Theorem | xrsclat 31298 | The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
⊢ ℝ*𝑠 ∈ CLat | ||
Theorem | xrsp0 31299 | The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ -∞ = (0.‘ℝ*𝑠) | ||
Theorem | xrsp1 31300 | The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
⊢ +∞ = (1.‘ℝ*𝑠) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |