| Metamath
Proof Explorer Theorem List (p. 313 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hlimreui 31201* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | hlimeui 31202* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (∃𝑥 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | isch3 31203* | A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥))) | ||
| Theorem | chcompl 31204* | Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹 ∈ Cauchy ∧ 𝐹:ℕ⟶𝐻) → ∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | helch 31205 | The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
| ⊢ ℋ ∈ Cℋ | ||
| Theorem | ifchhv 31206 | Prove if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.) |
| ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | ||
| Theorem | helsh 31207 | Hilbert space is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ ℋ ∈ Sℋ | ||
| Theorem | shsspwh 31208 | Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| ⊢ Sℋ ⊆ 𝒫 ℋ | ||
| Theorem | chsspwh 31209 | Closed subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| ⊢ Cℋ ⊆ 𝒫 ℋ | ||
| Theorem | hsn0elch 31210 | The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ {0ℎ} ∈ Cℋ | ||
| Theorem | norm1 31211 | From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝐴)) ·ℎ 𝐴)) = 1) | ||
| Theorem | norm1exi 31212* | A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) | ||
| Theorem | norm1hex 31213 | A normalized vector can exist only iff the Hilbert space has a nonzero vector. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
| ⊢ (∃𝑥 ∈ ℋ 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ ℋ (normℎ‘𝑦) = 1) | ||
| Definition | df-oc 31214* | Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31242 and chocvali 31261 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) | ||
| Definition | df-ch0 31215 | Define the zero for closed subspaces of Hilbert space. See h0elch 31217 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ 0ℋ = {0ℎ} | ||
| Theorem | elch0 31216 | Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | ||
| Theorem | h0elch 31217 | The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ 0ℋ ∈ Cℋ | ||
| Theorem | h0elsh 31218 | The zero subspace is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ 0ℋ ∈ Sℋ | ||
| Theorem | hhssva 31219 | The vector addition operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) | ||
| Theorem | hhsssm 31220 | The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) | ||
| Theorem | hhssnm 31221 | The norm operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) | ||
| Theorem | issubgoilem 31222* | Lemma for hhssabloilem 31223. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
| ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | hhssabloilem 31223 | Lemma for hhssabloi 31224. Formerly part of proof for hhssabloi 31224 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ) | ||
| Theorem | hhssabloi 31224 | Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp | ||
| Theorem | hhssablo 31225 | Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp) | ||
| Theorem | hhssnv 31226 | Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝑊 ∈ NrmCVec | ||
| Theorem | hhssnvt 31227 | Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) | ||
| Theorem | hhsst 31228 | A member of Sℋ is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) | ||
| Theorem | hhshsslem1 31229 | Lemma for hhsssh 31231. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝑊 ∈ (SubSp‘𝑈) & ⊢ 𝐻 ⊆ ℋ ⇒ ⊢ 𝐻 = (BaseSet‘𝑊) | ||
| Theorem | hhshsslem2 31230 | Lemma for hhsssh 31231. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝑊 ∈ (SubSp‘𝑈) & ⊢ 𝐻 ⊆ ℋ ⇒ ⊢ 𝐻 ∈ Sℋ | ||
| Theorem | hhsssh 31231 | The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ)) | ||
| Theorem | hhsssh2 31232 | The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ ↔ (𝑊 ∈ NrmCVec ∧ 𝐻 ⊆ ℋ)) | ||
| Theorem | hhssba 31233 | The base set of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐻 = (BaseSet‘𝑊) | ||
| Theorem | hhssvs 31234 | The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) | ||
| Theorem | hhssvsf 31235 | Mapping of the vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( −ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 | ||
| Theorem | hhssims 31236 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) ⇒ ⊢ 𝐷 = (IndMet‘𝑊) | ||
| Theorem | hhssims2 31237 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) | ||
| Theorem | hhssmet 31238 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐷 ∈ (Met‘𝐻) | ||
| Theorem | hhssmetdval 31239 | Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | hhsscms 31240 | The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐷 ∈ (CMet‘𝐻) | ||
| Theorem | hhssbnOLD 31241 | Obsolete version of cssbn 25291: Banach space property of a closed subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝑊 ∈ CBan | ||
| Theorem | ocval 31242* | Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) | ||
| Theorem | ocel 31243* | Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) | ||
| Theorem | shocel 31244* | Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) | ||
| Theorem | ocsh 31245 | The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | ||
| Theorem | shocsh 31246 | The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | ||
| Theorem | ocss 31247 | An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | ||
| Theorem | shocss 31248 | An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ⊆ ℋ) | ||
| Theorem | occon 31249 | Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) | ||
| Theorem | occon2 31250 | Double contraposition for orthogonal complement. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵)))) | ||
| Theorem | occon2i 31251 | Double contraposition for orthogonal complement. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ⊆ ℋ & ⊢ 𝐵 ⊆ ℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵))) | ||
| Theorem | oc0 31252 | The zero vector belongs to an orthogonal complement of a Hilbert subspace. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐻)) | ||
| Theorem | ocorth 31253 | Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | ||
| Theorem | shocorth 31254 | Members of a subspace and its complement are orthogonal. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | ||
| Theorem | ococss 31255 | Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | ||
| Theorem | shococss 31256 | Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | ||
| Theorem | shorth 31257 | Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) | ||
| Theorem | ocin 31258 | Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) | ||
| Theorem | occon3 31259 | Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴))) | ||
| Theorem | ocnel 31260 | A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) | ||
| Theorem | chocvali 31261* | Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of 𝐴 is the set of vectors that are orthogonal to all vectors in 𝐴. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0} | ||
| Theorem | shuni 31262 | Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐻 ∈ Sℋ ) & ⊢ (𝜑 → 𝐾 ∈ Sℋ ) & ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) & ⊢ (𝜑 → 𝐴 ∈ 𝐻) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝐶 ∈ 𝐻) & ⊢ (𝜑 → 𝐷 ∈ 𝐾) & ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | chocunii 31263 | Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | pjhthmo 31264* | Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
| Theorem | occllem 31265 | Lemma for occl 31266. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℋ) & ⊢ (𝜑 → 𝐹 ∈ Cauchy) & ⊢ (𝜑 → 𝐹:ℕ⟶(⊥‘𝐴)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → (( ⇝𝑣 ‘𝐹) ·ih 𝐵) = 0) | ||
| Theorem | occl 31266 | Closure of complement of Hilbert subset. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
| Theorem | shoccl 31267 | Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 13-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
| Theorem | choccl 31268 | Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
| Theorem | choccli 31269 | Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) ∈ Cℋ | ||
| Definition | df-shs 31270* | Define subspace sum in Sℋ. See shsval 31274, shsval2i 31349, and shsval3i 31350 for its value. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
| ⊢ +ℋ = (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) | ||
| Definition | df-span 31271* | Define the linear span of a subset of Hilbert space. Definition of span in [Schechter] p. 276. See spanval 31295 for its value. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) | ||
| Definition | df-chj 31272* | Define Hilbert lattice join. See chjval 31314 for its value and chjcl 31319 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31317. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) | ||
| Definition | df-chsup 31273 | Define the supremum of a set of Hilbert lattice elements. See chsupval2 31372 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31301. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
| ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | ||
| Theorem | shsval 31274 | Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | ||
| Theorem | shsss 31275 | The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ ℋ) | ||
| Theorem | shsel 31276* | Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
| Theorem | shsel3 31277* | Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 −ℎ 𝑦))) | ||
| Theorem | shseli 31278* | Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | shscli 31279 | Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ | ||
| Theorem | shscl 31280 | Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ∈ Sℋ ) | ||
| Theorem | shscom 31281 | Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | ||
| Theorem | shsva 31282 | Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsel1 31283 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsel2 31284 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsvs 31285 | Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsub1 31286 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsub2 31287 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 +ℋ 𝐴)) | ||
| Theorem | choc0 31288 | The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ (⊥‘0ℋ) = ℋ | ||
| Theorem | choc1 31289 | The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (⊥‘ ℋ) = 0ℋ | ||
| Theorem | chocnul 31290 | Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
| ⊢ (⊥‘∅) = ℋ | ||
| Theorem | shintcli 31291 | Closure of intersection of a nonempty subset of Sℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Sℋ | ||
| Theorem | shintcl 31292 | The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) | ||
| Theorem | chintcli 31293 | The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Cℋ | ||
| Theorem | chintcl 31294 | The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) | ||
| Theorem | spanval 31295* | Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | ||
| Theorem | hsupval 31296 | Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31371. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
| Theorem | chsupval 31297 | The value of the supremum of a set of closed subspaces of Hilbert space. For an alternate version of the value, see chsupval2 31372. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
| Theorem | spancl 31298 | The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ∈ Sℋ ) | ||
| Theorem | elspancl 31299 | A member of a span is a vector. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ∈ (span‘𝐴)) → 𝐵 ∈ ℋ) | ||
| Theorem | shsupcl 31300 | Closure of the subspace supremum of set of subsets of Hilbert space. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → (span‘∪ 𝐴) ∈ Sℋ ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |