![]() |
Metamath
Proof Explorer Theorem List (p. 313 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hstrlem2 31201* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) ⇒ ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((projℎ‘𝐶)‘𝑢)) | ||
Theorem | hstrlem3a 31202* | Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → 𝑆 ∈ CHStates) | ||
Theorem | hstrlem3 31203* | Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝑆 ∈ CHStates) | ||
Theorem | hstrlem4 31204* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (normℎ‘(𝑆‘𝐴)) = 1) | ||
Theorem | hstrlem5 31205* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (normℎ‘(𝑆‘𝐵)) < 1) | ||
Theorem | hstrlem6 31206* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ¬ ((normℎ‘(𝑆‘𝐴)) = 1 → (normℎ‘(𝑆‘𝐵)) = 1)) | ||
Theorem | hstri 31207* | Hilbert space admits a strong set of Hilbert-space-valued states (CH-states). Theorem in [Mayet3] p. 10. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ CHStates ((normℎ‘(𝑓‘𝐴)) = 1 → (normℎ‘(𝑓‘𝐵)) = 1) → 𝐴 ⊆ 𝐵) | ||
Theorem | hstrbi 31208* | Strong CH-state theorem (bidirectional version). Theorem in [Mayet3] p. 10 and its converse. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ CHStates ((normℎ‘(𝑓‘𝐴)) = 1 → (normℎ‘(𝑓‘𝐵)) = 1) ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | largei 31209* | A Hilbert lattice admits a largei set of states. Remark in [Mayet] p. 370. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 = 0ℋ ↔ ∃𝑓 ∈ States (𝑓‘𝐴) = 1) | ||
Theorem | jplem1 31210 | Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑢 ∈ 𝐴 ↔ ((normℎ‘((projℎ‘𝐴)‘𝑢))↑2) = 1)) | ||
Theorem | jplem2 31211* | Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑢 ∈ 𝐴 ↔ (𝑆‘𝐴) = 1)) | ||
Theorem | jpi 31212* | The function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a Jauch-Piron state. Remark in [Mayet] p. 370. (See strlem3a 31194 for the proof that 𝑆 is a state.) (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (((𝑆‘𝐴) = 1 ∧ (𝑆‘𝐵) = 1) ↔ (𝑆‘(𝐴 ∩ 𝐵)) = 1)) | ||
Theorem | golem1 31213 | Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → (((𝑓‘𝐹) + (𝑓‘𝐺)) + (𝑓‘𝐻)) = (((𝑓‘𝐷) + (𝑓‘𝑅)) + (𝑓‘𝑆))) | ||
Theorem | golem2 31214 | Lemma for Godowski's equation. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → ((𝑓‘((𝐹 ∩ 𝐺) ∩ 𝐻)) = 1 → (𝑓‘𝐷) = 1)) | ||
Theorem | goeqi 31215 | Godowski's equation, shown here as a variant equivalent to Equation SF of [Godowski] p. 730. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) ⇒ ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) ⊆ 𝐷 | ||
Theorem | stcltr1i 31216* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) | ||
Theorem | stcltr2i 31217* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) | ||
Theorem | stcltrlem1 31218* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐵) = 1 → (𝑆‘((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) = 1)) | ||
Theorem | stcltrlem2 31219* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) | ||
Theorem | stcltrthi 31220* | Theorem for classically strong set of states. If there exists a "classically strong set of states" on lattice Cℋ (or actually any ortholattice, which would have an identical proof), then any two elements of the lattice commute, i.e., the lattice is distributive. (Proof due to Mladen Pavicic.) Theorem 3.3 of [MegPav2000] p. 2344. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∃𝑠 ∈ States ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑠‘𝑥) = 1 → (𝑠‘𝑦) = 1) → 𝑥 ⊆ 𝑦) ⇒ ⊢ 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) | ||
Definition | df-cv 31221* | Define the covers relation (on the Hilbert lattice). Definition 3.2.18 of [PtakPulmannova] p. 68, whose notation we use. Ptak/Pulmannova's notation 𝐴 ⋖ℋ 𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See cvbr 31224 and cvbr2 31225 for membership relations. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ⋖ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈ Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} | ||
Definition | df-md 31222* | Define the modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M for "the ordered pair <x,y> is a modular pair." See mdbr 31236 for membership relation. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
⊢ 𝑀ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑧 ⊆ 𝑦 → ((𝑧 ∨ℋ 𝑥) ∩ 𝑦) = (𝑧 ∨ℋ (𝑥 ∩ 𝑦))))} | ||
Definition | df-dmd 31223* | Define the dual modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M* for "the ordered pair <x,y> is a dual modular pair." See dmdbr 31241 for membership relation. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝑀ℋ* = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} | ||
Theorem | cvbr 31224* | Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | ||
Theorem | cvbr2 31225* | Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) | ||
Theorem | cvcon3 31226 | Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) | ||
Theorem | cvpss 31227 | The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
Theorem | cvnbtwn 31228 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | ||
Theorem | cvnbtwn2 31229 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) | ||
Theorem | cvnbtwn3 31230 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) | ||
Theorem | cvnbtwn4 31231 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) | ||
Theorem | cvnsym 31232 | The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) | ||
Theorem | cvnref 31233 | The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) | ||
Theorem | cvntr 31234 | The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) | ||
Theorem | spansncv2 31235 | Hilbert space has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (¬ (span‘{𝐵}) ⊆ 𝐴 → 𝐴 ⋖ℋ (𝐴 ∨ℋ (span‘{𝐵})))) | ||
Theorem | mdbr 31236* | Binary relation expressing 〈𝐴, 𝐵〉 is a modular pair. Definition 1.1 of [MaedaMaeda] p. 1. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
Theorem | mdi 31237 | Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) | ||
Theorem | mdbr2 31238* | Binary relation expressing the modular pair property. This version has a weaker constraint than mdbr 31236. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
Theorem | mdbr3 31239* | Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | mdbr4 31240* | Binary relation expressing the modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | dmdbr 31241* | Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | ||
Theorem | dmdmd 31242 | The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ (⊥‘𝐵))) | ||
Theorem | mddmd 31243 | The modular pair property expressed in terms of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) | ||
Theorem | dmdi 31244 | Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | dmdbr2 31245* | Binary relation expressing the dual modular pair property. This version has a weaker constraint than dmdbr 31241. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) | ||
Theorem | dmdi2 31246 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | dmdbr3 31247* | Binary relation expressing the dual modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) | ||
Theorem | dmdbr4 31248* | Binary relation expressing the dual modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
Theorem | dmdi4 31249 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ((𝐶 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝐶 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
Theorem | dmdbr5 31250* | Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) | ||
Theorem | mddmd2 31251* | Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ* 𝑥)) | ||
Theorem | mdsl0 31252 | A sublattice condition that transfers the modular pair property. Exercise 12 of [Kalmbach] p. 103. Also Lemma 1.5.3 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ (𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ )) → ((((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧ 𝐴 𝑀ℋ 𝐵) → 𝐶 𝑀ℋ 𝐷)) | ||
Theorem | ssmd1 31253 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | ssmd2 31254 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐵 𝑀ℋ 𝐴) | ||
Theorem | ssdmd1 31255 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | ssdmd2 31256 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴)) | ||
Theorem | dmdsl3 31257 | Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) | ||
Theorem | mdsl3 31258 | Sublattice mapping for a modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = 𝐶) | ||
Theorem | mdslle1i 31259 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵))) | ||
Theorem | mdslle2i 31260 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) ⊆ (𝐷 ∨ℋ 𝐴))) | ||
Theorem | mdslj1i 31261 | Join preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∨ℋ 𝐷) ∩ 𝐵) = ((𝐶 ∩ 𝐵) ∨ℋ (𝐷 ∩ 𝐵))) | ||
Theorem | mdslj2i 31262 | Meet preservation of the reverse mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → ((𝐶 ∩ 𝐷) ∨ℋ 𝐴) = ((𝐶 ∨ℋ 𝐴) ∩ (𝐷 ∨ℋ 𝐴))) | ||
Theorem | mdsl1i 31263* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) | ||
Theorem | mdsl2i 31264* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 28-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | mdsl2bi 31265* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | cvmdi 31266 | The covering property implies the modular pair property. Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 16-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | mdslmd1lem1 31267 | Lemma for mdslmd1i 31271. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (((𝑅 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑅 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑅 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑅 ∧ 𝑅 ⊆ (𝐷 ∩ 𝐵)) → ((𝑅 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑅 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) | ||
Theorem | mdslmd1lem2 31268 | Lemma for mdslmd1i 31271. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (((𝑅 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑅 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑅 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑅 ∧ 𝑅 ⊆ 𝐷) → ((𝑅 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑅 ∨ℋ (𝐶 ∩ 𝐷))))) | ||
Theorem | mdslmd1lem3 31269* | Lemma for mdslmd1i 31271. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝑥 ∈ Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) | ||
Theorem | mdslmd1lem4 31270* | Lemma for mdslmd1i 31271. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝑥 ∈ Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) | ||
Theorem | mdslmd1i 31271 | Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵))) | ||
Theorem | mdslmd2i 31272 | Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (join version). (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) 𝑀ℋ (𝐷 ∨ℋ 𝐴))) | ||
Theorem | mdsldmd1i 31273 | Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ* 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵))) | ||
Theorem | mdslmd3i 31274 | Modular pair conditions that imply the modular pair property in a sublattice. Lemma 1.5.1 of [MaedaMaeda] p. 2. (Contributed by NM, 23-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) 𝑀ℋ 𝐶) ∧ ((𝐴 ∩ 𝐶) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐴)) → 𝐷 𝑀ℋ (𝐵 ∩ 𝐶)) | ||
Theorem | mdslmd4i 31275 | Modular pair condition that implies the modular pair property in a sublattice. Lemma 1.5.2 of [MaedaMaeda] p. 2. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐶 𝑀ℋ 𝐷) | ||
Theorem | csmdsymi 31276* | Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((∀𝑐 ∈ Cℋ (𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐) ∧ 𝐴 𝑀ℋ 𝐵) → 𝐵 𝑀ℋ 𝐴) | ||
Theorem | mdexchi 31277 | An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐶 ∨ℋ 𝐴) 𝑀ℋ 𝐵 ∧ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐴 ∩ 𝐵))) | ||
Theorem | cvmd 31278 | The covering property implies the modular pair property. Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cvdmd 31279 | The covering property implies the dual modular pair property. Lemma 7.5.2 of [MaedaMaeda] p. 31. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵)) → 𝐴 𝑀ℋ* 𝐵) | ||
Definition | df-at 31280 | Define the set of atoms in a Hilbert lattice. An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. Definition of atom in [Kalmbach] p. 15. See ela 31281 and elat2 31282 for membership relations. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | ||
Theorem | ela 31281 | Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | ||
Theorem | elat2 31282* | Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) | ||
Theorem | elatcv0 31283 | A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (𝐴 ∈ HAtoms ↔ 0ℋ ⋖ℋ 𝐴)) | ||
Theorem | atcv0 31284 | An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) | ||
Theorem | atssch 31285 | Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ HAtoms ⊆ Cℋ | ||
Theorem | atelch 31286 | An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | ||
Theorem | atne0 31287 | An atom is not the Hilbert lattice zero. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ) | ||
Theorem | atss 31288 | A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) | ||
Theorem | atsseq 31289 | Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | atcveq0 31290 | A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ)) | ||
Theorem | h1da 31291 | A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (⊥‘(⊥‘{𝐴})) ∈ HAtoms) | ||
Theorem | spansna 31292 | The span of the singleton of a vector is an atom. (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (span‘{𝐴}) ∈ HAtoms) | ||
Theorem | sh1dle 31293 | A 1-dimensional subspace is less than or equal to any subspace containing its generating vector. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
Theorem | ch1dle 31294 | A 1-dimensional subspace is less than or equal to any member of Cℋ containing its generating vector. (Contributed by NM, 30-May-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
Theorem | atom1d 31295* | The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧ 𝐴 = (span‘{𝑥}))) | ||
Theorem | superpos 31296* | Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chcv1 31297 | The Hilbert lattice has the covering property. Proposition 1(ii) of [Kalmbach] p. 140 (and its converse). (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chcv2 31298 | The Hilbert lattice has the covering property. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chjatom 31299 | The join of a closed subspace and an atom equals their subspace sum. Special case of remark in [Kalmbach] p. 65, stating that if 𝐴 or 𝐵 is finite-dimensional, then this equality holds. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | shatomici 31300* | The lattice of Hilbert subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |