| Metamath
Proof Explorer Theorem List (p. 313 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hhssnvt 31201 | Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) | ||
| Theorem | hhsst 31202 | A member of Sℋ is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) | ||
| Theorem | hhshsslem1 31203 | Lemma for hhsssh 31205. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝑊 ∈ (SubSp‘𝑈) & ⊢ 𝐻 ⊆ ℋ ⇒ ⊢ 𝐻 = (BaseSet‘𝑊) | ||
| Theorem | hhshsslem2 31204 | Lemma for hhsssh 31205. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝑊 ∈ (SubSp‘𝑈) & ⊢ 𝐻 ⊆ ℋ ⇒ ⊢ 𝐻 ∈ Sℋ | ||
| Theorem | hhsssh 31205 | The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ)) | ||
| Theorem | hhsssh2 31206 | The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (𝐻 ∈ Sℋ ↔ (𝑊 ∈ NrmCVec ∧ 𝐻 ⊆ ℋ)) | ||
| Theorem | hhssba 31207 | The base set of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐻 = (BaseSet‘𝑊) | ||
| Theorem | hhssvs 31208 | The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) | ||
| Theorem | hhssvsf 31209 | Mapping of the vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( −ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 | ||
| Theorem | hhssims 31210 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) ⇒ ⊢ 𝐷 = (IndMet‘𝑊) | ||
| Theorem | hhssims2 31211 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) | ||
| Theorem | hhssmet 31212 | Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐷 ∈ (Met‘𝐻) | ||
| Theorem | hhssmetdval 31213 | Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | hhsscms 31214 | The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐷 ∈ (CMet‘𝐻) | ||
| Theorem | hhssbnOLD 31215 | Obsolete version of cssbn 25282: Banach space property of a closed subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝑊 ∈ CBan | ||
| Theorem | ocval 31216* | Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ⊆ ℋ → (⊥‘𝐻) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐻 (𝑥 ·ih 𝑦) = 0}) | ||
| Theorem | ocel 31217* | Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) | ||
| Theorem | shocel 31218* | Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ 𝐻 (𝐴 ·ih 𝑥) = 0))) | ||
| Theorem | ocsh 31219 | The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | ||
| Theorem | shocsh 31220 | The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | ||
| Theorem | ocss 31221 | An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | ||
| Theorem | shocss 31222 | An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ⊆ ℋ) | ||
| Theorem | occon 31223 | Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) | ||
| Theorem | occon2 31224 | Double contraposition for orthogonal complement. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵)))) | ||
| Theorem | occon2i 31225 | Double contraposition for orthogonal complement. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ⊆ ℋ & ⊢ 𝐵 ⊆ ℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵))) | ||
| Theorem | oc0 31226 | The zero vector belongs to an orthogonal complement of a Hilbert subspace. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ (⊥‘𝐻)) | ||
| Theorem | ocorth 31227 | Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐻 ⊆ ℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | ||
| Theorem | shocorth 31228 | Members of a subspace and its complement are orthogonal. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → (𝐴 ·ih 𝐵) = 0)) | ||
| Theorem | ococss 31229 | Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | ||
| Theorem | shococss 31230 | Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 10-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | ||
| Theorem | shorth 31231 | Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) | ||
| Theorem | ocin 31232 | Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (𝐴 ∩ (⊥‘𝐴)) = 0ℋ) | ||
| Theorem | occon3 31233 | Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴))) | ||
| Theorem | ocnel 31234 | A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ (⊥‘𝐻) ∧ 𝐴 ≠ 0ℎ) → ¬ 𝐴 ∈ 𝐻) | ||
| Theorem | chocvali 31235* | Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of 𝐴 is the set of vectors that are orthogonal to all vectors in 𝐴. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0} | ||
| Theorem | shuni 31236 | Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐻 ∈ Sℋ ) & ⊢ (𝜑 → 𝐾 ∈ Sℋ ) & ⊢ (𝜑 → (𝐻 ∩ 𝐾) = 0ℋ) & ⊢ (𝜑 → 𝐴 ∈ 𝐻) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝐶 ∈ 𝐻) & ⊢ (𝜑 → 𝐷 ∈ 𝐾) & ⊢ (𝜑 → (𝐴 +ℎ 𝐵) = (𝐶 +ℎ 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | chocunii 31237 | Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of [Beran] p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999.) (Proof shortened by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ (⊥‘𝐻))) → ((𝑅 = (𝐴 +ℎ 𝐵) ∧ 𝑅 = (𝐶 +ℎ 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | pjhthmo 31238* | Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
| Theorem | occllem 31239 | Lemma for occl 31240. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℋ) & ⊢ (𝜑 → 𝐹 ∈ Cauchy) & ⊢ (𝜑 → 𝐹:ℕ⟶(⊥‘𝐴)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → (( ⇝𝑣 ‘𝐹) ·ih 𝐵) = 0) | ||
| Theorem | occl 31240 | Closure of complement of Hilbert subset. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
| Theorem | shoccl 31241 | Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 13-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
| Theorem | choccl 31242 | Closure of complement of Hilbert subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | ||
| Theorem | choccli 31243 | Closure of Cℋ orthocomplement. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) ∈ Cℋ | ||
| Definition | df-shs 31244* | Define subspace sum in Sℋ. See shsval 31248, shsval2i 31323, and shsval3i 31324 for its value. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
| ⊢ +ℋ = (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) | ||
| Definition | df-span 31245* | Define the linear span of a subset of Hilbert space. Definition of span in [Schechter] p. 276. See spanval 31269 for its value. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) | ||
| Definition | df-chj 31246* | Define Hilbert lattice join. See chjval 31288 for its value and chjcl 31293 for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to Cℋ; see sshjcl 31291. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥 ∪ 𝑦)))) | ||
| Definition | df-chsup 31247 | Define the supremum of a set of Hilbert lattice elements. See chsupval2 31346 for its value. We actually define the supremum for an arbitrary collection of Hilbert space subsets, not just elements of the Hilbert lattice Cℋ, to allow more general theorems. Even for general subsets the supremum still a Hilbert lattice element; see hsupcl 31275. (Contributed by NM, 9-Dec-2003.) (New usage is discouraged.) |
| ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘∪ 𝑥))) | ||
| Theorem | shsval 31248 | Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in [Kalmbach] p. 65. (Contributed by NM, 16-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | ||
| Theorem | shsss 31249 | The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ⊆ ℋ) | ||
| Theorem | shsel 31250* | Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | ||
| Theorem | shsel3 31251* | Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 −ℎ 𝑦))) | ||
| Theorem | shseli 31252* | Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | shscli 31253 | Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) ∈ Sℋ | ||
| Theorem | shscl 31254 | Closure of subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) ∈ Sℋ ) | ||
| Theorem | shscom 31255 | Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) | ||
| Theorem | shsva 31256 | Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsel1 31257 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsel2 31258 | A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐵 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsvs 31259 | Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 −ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵))) | ||
| Theorem | shsub1 31260 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐴 +ℋ 𝐵)) | ||
| Theorem | shsub2 31261 | Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ (𝐵 +ℋ 𝐴)) | ||
| Theorem | choc0 31262 | The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| ⊢ (⊥‘0ℋ) = ℋ | ||
| Theorem | choc1 31263 | The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (⊥‘ ℋ) = 0ℋ | ||
| Theorem | chocnul 31264 | Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
| ⊢ (⊥‘∅) = ℋ | ||
| Theorem | shintcli 31265 | Closure of intersection of a nonempty subset of Sℋ. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Sℋ | ||
| Theorem | shintcl 31266 | The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) | ||
| Theorem | chintcli 31267 | The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ⇒ ⊢ ∩ 𝐴 ∈ Cℋ | ||
| Theorem | chintcl 31268 | The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) | ||
| Theorem | spanval 31269* | Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | ||
| Theorem | hsupval 31270 | Value of supremum of set of subsets of Hilbert space. For an alternate version of the value, see hsupval2 31345. (Contributed by NM, 9-Dec-2003.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
| Theorem | chsupval 31271 | The value of the supremum of a set of closed subspaces of Hilbert space. For an alternate version of the value, see chsupval2 31346. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) = (⊥‘(⊥‘∪ 𝐴))) | ||
| Theorem | spancl 31272 | The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ∈ Sℋ ) | ||
| Theorem | elspancl 31273 | A member of a span is a vector. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ∈ (span‘𝐴)) → 𝐵 ∈ ℋ) | ||
| Theorem | shsupcl 31274 | Closure of the subspace supremum of set of subsets of Hilbert space. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → (span‘∪ 𝐴) ∈ Sℋ ) | ||
| Theorem | hsupcl 31275 | Closure of supremum of set of subsets of Hilbert space. Note that the supremum belongs to Cℋ even if the subsets do not. (Contributed by NM, 10-Nov-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘𝐴) ∈ Cℋ ) | ||
| Theorem | chsupcl 31276 | Closure of supremum of subset of Cℋ. Definition of supremum in Proposition 1 of [Kalmbach] p. 65. Shows that Cℋ is a complete lattice. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 10-Nov-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ( ∨ℋ ‘𝐴) ∈ Cℋ ) | ||
| Theorem | hsupss 31277 | Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) | ||
| Theorem | chsupss 31278 | Subset relation for supremum of subset of Cℋ. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐵 ⊆ Cℋ ) → (𝐴 ⊆ 𝐵 → ( ∨ℋ ‘𝐴) ⊆ ( ∨ℋ ‘𝐵))) | ||
| Theorem | hsupunss 31279 | The union of a set of Hilbert space subsets is smaller than its supremum. (Contributed by NM, 24-Nov-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝒫 ℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) | ||
| Theorem | chsupunss 31280 | The union of a set of closed subspaces is smaller than its supremum. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Cℋ → ∪ 𝐴 ⊆ ( ∨ℋ ‘𝐴)) | ||
| Theorem | spanss2 31281 | A subset of Hilbert space is included in its span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴)) | ||
| Theorem | shsupunss 31282 | The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ Sℋ → ∪ 𝐴 ⊆ (span‘∪ 𝐴)) | ||
| Theorem | spanid 31283 | A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | ||
| Theorem | spanss 31284 | Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵) → (span‘𝐴) ⊆ (span‘𝐵)) | ||
| Theorem | spanssoc 31285 | The span of a subset of Hilbert space is less than or equal to its closure (double orthogonal complement). (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ⊆ (⊥‘(⊥‘𝐴))) | ||
| Theorem | sshjval 31286 | Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | shjval 31287 | Value of join in Sℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | chjval 31288 | Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | chjvali 31289 | Value of join in Cℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) | ||
| Theorem | sshjval3 31290 | Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice Cℋ. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) | ||
| Theorem | sshjcl 31291 | Closure of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (New usage is discouraged.) |
| ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
| Theorem | shjcl 31292 | Closure of join in Sℋ. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
| Theorem | chjcl 31293 | Closure of join in Cℋ. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | ||
| Theorem | shjcom 31294 | Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | ||
| Theorem | shless 31295 | Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) | ||
| Theorem | shlej1 31296 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) | ||
| Theorem | shlej2 31297 | Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) | ||
| Theorem | shincli 31298 | Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ Sℋ | ||
| Theorem | shscomi 31299 | Commutative law for subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴) | ||
| Theorem | shsvai 31300 | Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |