HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbr Structured version   Visualization version   GIF version

Theorem cmbr 30529
Description: Binary relation expressing 𝐴 commutes with 𝐵. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cmbr ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))

Proof of Theorem cmbr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . 5 (𝑥 = 𝐴 → (𝑥C𝐴C ))
21anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥C𝑦C ) ↔ (𝐴C𝑦C )))
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 ineq1 4166 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
5 ineq1 4166 . . . . . 6 (𝑥 = 𝐴 → (𝑥 ∩ (⊥‘𝑦)) = (𝐴 ∩ (⊥‘𝑦)))
64, 5oveq12d 7376 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))) = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))))
73, 6eqeq12d 2753 . . . 4 (𝑥 = 𝐴 → (𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))) ↔ 𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦)))))
82, 7anbi12d 632 . . 3 (𝑥 = 𝐴 → (((𝑥C𝑦C ) ∧ 𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦)))) ↔ ((𝐴C𝑦C ) ∧ 𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))))))
9 eleq1 2826 . . . . 5 (𝑦 = 𝐵 → (𝑦C𝐵C ))
109anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴C𝑦C ) ↔ (𝐴C𝐵C )))
11 ineq2 4167 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
12 fveq2 6843 . . . . . . 7 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1312ineq2d 4173 . . . . . 6 (𝑦 = 𝐵 → (𝐴 ∩ (⊥‘𝑦)) = (𝐴 ∩ (⊥‘𝐵)))
1411, 13oveq12d 7376 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))) = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))
1514eqeq2d 2748 . . . 4 (𝑦 = 𝐵 → (𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))) ↔ 𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
1610, 15anbi12d 632 . . 3 (𝑦 = 𝐵 → (((𝐴C𝑦C ) ∧ 𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦)))) ↔ ((𝐴C𝐵C ) ∧ 𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))))
17 df-cm 30528 . . 3 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ 𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))))}
188, 16, 17brabg 5497 . 2 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ ((𝐴C𝐵C ) ∧ 𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))))
1918bianabs 543 1 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cin 3910   class class class wbr 5106  cfv 6497  (class class class)co 7358   C cch 29874  cort 29875   chj 29878   𝐶 ccm 29881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-iota 6449  df-fv 6505  df-ov 7361  df-cm 30528
This theorem is referenced by:  cmbri  30535  cm2j  30565
  Copyright terms: Public domain W3C validator