Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∈ Cℋ
↔ 𝐴 ∈
Cℋ )) |
2 | 1 | anbi1d 629 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ↔ (𝐴 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ))) |
3 | | id 22 |
. . . . 5
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
4 | | ineq1 4136 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) |
5 | | ineq1 4136 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∩ (⊥‘𝑦)) = (𝐴 ∩ (⊥‘𝑦))) |
6 | 4, 5 | oveq12d 7273 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) = ((𝐴 ∩ 𝑦) ∨ℋ (𝐴 ∩ (⊥‘𝑦)))) |
7 | 3, 6 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))) ↔ 𝐴 = ((𝐴 ∩ 𝑦) ∨ℋ (𝐴 ∩ (⊥‘𝑦))))) |
8 | 2, 7 | anbi12d 630 |
. . 3
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦)))) ↔ ((𝐴 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ 𝐴 = ((𝐴 ∩ 𝑦) ∨ℋ (𝐴 ∩ (⊥‘𝑦)))))) |
9 | | eleq1 2826 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝑦 ∈ Cℋ
↔ 𝐵 ∈
Cℋ )) |
10 | 9 | anbi2d 628 |
. . . 4
⊢ (𝑦 = 𝐵 → ((𝐴 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ↔ (𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ))) |
11 | | ineq2 4137 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) |
12 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵)) |
13 | 12 | ineq2d 4143 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐴 ∩ (⊥‘𝑦)) = (𝐴 ∩ (⊥‘𝐵))) |
14 | 11, 13 | oveq12d 7273 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐴 ∩ 𝑦) ∨ℋ (𝐴 ∩ (⊥‘𝑦))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
15 | 14 | eqeq2d 2749 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝐴 = ((𝐴 ∩ 𝑦) ∨ℋ (𝐴 ∩ (⊥‘𝑦))) ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) |
16 | 10, 15 | anbi12d 630 |
. . 3
⊢ (𝑦 = 𝐵 → (((𝐴 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ 𝐴 = ((𝐴 ∩ 𝑦) ∨ℋ (𝐴 ∩ (⊥‘𝑦)))) ↔ ((𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) ∧ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))))) |
17 | | df-cm 29846 |
. . 3
⊢
𝐶ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |
18 | 8, 16, 17 | brabg 5445 |
. 2
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝐶ℋ 𝐵 ↔ ((𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) ∧ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))))) |
19 | 18 | bianabs 541 |
1
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) |