HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbr Structured version   Visualization version   GIF version

Theorem cmbr 31387
Description: Binary relation expressing 𝐴 commutes with 𝐵. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cmbr ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))

Proof of Theorem cmbr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . . . . 5 (𝑥 = 𝐴 → (𝑥C𝐴C ))
21anbi1d 630 . . . 4 (𝑥 = 𝐴 → ((𝑥C𝑦C ) ↔ (𝐴C𝑦C )))
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 ineq1 4201 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
5 ineq1 4201 . . . . . 6 (𝑥 = 𝐴 → (𝑥 ∩ (⊥‘𝑦)) = (𝐴 ∩ (⊥‘𝑦)))
64, 5oveq12d 7432 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))) = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))))
73, 6eqeq12d 2744 . . . 4 (𝑥 = 𝐴 → (𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))) ↔ 𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦)))))
82, 7anbi12d 631 . . 3 (𝑥 = 𝐴 → (((𝑥C𝑦C ) ∧ 𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦)))) ↔ ((𝐴C𝑦C ) ∧ 𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))))))
9 eleq1 2817 . . . . 5 (𝑦 = 𝐵 → (𝑦C𝐵C ))
109anbi2d 629 . . . 4 (𝑦 = 𝐵 → ((𝐴C𝑦C ) ↔ (𝐴C𝐵C )))
11 ineq2 4202 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
12 fveq2 6891 . . . . . . 7 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1312ineq2d 4208 . . . . . 6 (𝑦 = 𝐵 → (𝐴 ∩ (⊥‘𝑦)) = (𝐴 ∩ (⊥‘𝐵)))
1411, 13oveq12d 7432 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))) = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))
1514eqeq2d 2739 . . . 4 (𝑦 = 𝐵 → (𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦))) ↔ 𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
1610, 15anbi12d 631 . . 3 (𝑦 = 𝐵 → (((𝐴C𝑦C ) ∧ 𝐴 = ((𝐴𝑦) ∨ (𝐴 ∩ (⊥‘𝑦)))) ↔ ((𝐴C𝐵C ) ∧ 𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))))
17 df-cm 31386 . . 3 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ 𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))))}
188, 16, 17brabg 5535 . 2 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ ((𝐴C𝐵C ) ∧ 𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))))
1918bianabs 541 1 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cin 3944   class class class wbr 5142  cfv 6542  (class class class)co 7414   C cch 30732  cort 30733   chj 30736   𝐶 ccm 30739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-iota 6494  df-fv 6550  df-ov 7417  df-cm 31386
This theorem is referenced by:  cmbri  31393  cm2j  31423
  Copyright terms: Public domain W3C validator