![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cmbri | Structured version Visualization version GIF version |
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cmbri | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoml2.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | pjoml2.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
3 | cmbr 31616 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Cℋ cch 30961 ⊥cort 30962 ∨ℋ chj 30965 𝐶ℋ ccm 30968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 df-ov 7451 df-cm 31615 |
This theorem is referenced by: cmcmlem 31623 cmcm2i 31625 cmbr2i 31628 cmbr3i 31632 pjclem1 32227 pjci 32232 |
Copyright terms: Public domain | W3C validator |