| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cmbri | Structured version Visualization version GIF version | ||
| Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cmbri | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
| 3 | cmbr 31566 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Cℋ cch 30911 ⊥cort 30912 ∨ℋ chj 30915 𝐶ℋ ccm 30918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-iota 6442 df-fv 6494 df-ov 7355 df-cm 31565 |
| This theorem is referenced by: cmcmlem 31573 cmcm2i 31575 cmbr2i 31578 cmbr3i 31582 pjclem1 32177 pjci 32182 |
| Copyright terms: Public domain | W3C validator |