| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cmbri | Structured version Visualization version GIF version | ||
| Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cmbri | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
| 3 | cmbr 31513 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Cℋ cch 30858 ⊥cort 30859 ∨ℋ chj 30862 𝐶ℋ ccm 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-iota 6464 df-fv 6519 df-ov 7390 df-cm 31512 |
| This theorem is referenced by: cmcmlem 31520 cmcm2i 31522 cmbr2i 31525 cmbr3i 31529 pjclem1 32124 pjci 32129 |
| Copyright terms: Public domain | W3C validator |