HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Structured version   Visualization version   GIF version

Theorem cmbri 31110
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion
Ref Expression
cmbri (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2 𝐴C
2 pjoml2.2 . 2 𝐵C
3 cmbr 31104 . 2 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
41, 2, 3mp2an 688 1 (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2104  cin 3946   class class class wbr 5147  cfv 6542  (class class class)co 7411   C cch 30449  cort 30450   chj 30453   𝐶 ccm 30456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-iota 6494  df-fv 6550  df-ov 7414  df-cm 31103
This theorem is referenced by:  cmcmlem  31111  cmcm2i  31113  cmbr2i  31116  cmbr3i  31120  pjclem1  31715  pjci  31720
  Copyright terms: Public domain W3C validator