HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Structured version   Visualization version   GIF version

Theorem cmbri 31519
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion
Ref Expression
cmbri (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2 𝐴C
2 pjoml2.2 . 2 𝐵C
3 cmbr 31513 . 2 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
41, 2, 3mp2an 692 1 (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cin 3913   class class class wbr 5107  cfv 6511  (class class class)co 7387   C cch 30858  cort 30859   chj 30862   𝐶 ccm 30865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-iota 6464  df-fv 6519  df-ov 7390  df-cm 31512
This theorem is referenced by:  cmcmlem  31520  cmcm2i  31522  cmbr2i  31525  cmbr3i  31529  pjclem1  32124  pjci  32129
  Copyright terms: Public domain W3C validator