| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cmbri | Structured version Visualization version GIF version | ||
| Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cmbri | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
| 3 | cmbr 31511 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 Cℋ cch 30856 ⊥cort 30857 ∨ℋ chj 30860 𝐶ℋ ccm 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-iota 6483 df-fv 6538 df-ov 7406 df-cm 31510 |
| This theorem is referenced by: cmcmlem 31518 cmcm2i 31520 cmbr2i 31523 cmbr3i 31527 pjclem1 32122 pjci 32127 |
| Copyright terms: Public domain | W3C validator |