![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cmbri | Structured version Visualization version GIF version |
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cmbri | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoml2.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | pjoml2.2 | . 2 ⊢ 𝐵 ∈ Cℋ | |
3 | cmbr 28998 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) | |
4 | 1, 2, 3 | mp2an 685 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1658 ∈ wcel 2166 ∩ cin 3797 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 Cℋ cch 28341 ⊥cort 28342 ∨ℋ chj 28345 𝐶ℋ ccm 28348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-iota 6086 df-fv 6131 df-ov 6908 df-cm 28997 |
This theorem is referenced by: cmcmlem 29005 cmcm2i 29007 cmbr2i 29010 cmbr3i 29014 pjclem1 29609 pjci 29614 |
Copyright terms: Public domain | W3C validator |