HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Structured version   Visualization version   GIF version

Theorem cmbri 31618
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion
Ref Expression
cmbri (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2 𝐴C
2 pjoml2.2 . 2 𝐵C
3 cmbr 31612 . 2 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
41, 2, 3mp2an 692 1 (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1536  wcel 2105  cin 3961   class class class wbr 5147  cfv 6562  (class class class)co 7430   C cch 30957  cort 30958   chj 30961   𝐶 ccm 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-iota 6515  df-fv 6570  df-ov 7433  df-cm 31611
This theorem is referenced by:  cmcmlem  31619  cmcm2i  31621  cmbr2i  31624  cmbr3i  31628  pjclem1  32223  pjci  32228
  Copyright terms: Public domain W3C validator