HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Structured version   Visualization version   GIF version

Theorem cmbri 29853
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion
Ref Expression
cmbri (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2 𝐴C
2 pjoml2.2 . 2 𝐵C
3 cmbr 29847 . 2 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵)))))
41, 2, 3mp2an 688 1 (𝐴 𝐶 𝐵𝐴 = ((𝐴𝐵) ∨ (𝐴 ∩ (⊥‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  cin 3882   class class class wbr 5070  cfv 6418  (class class class)co 7255   C cch 29192  cort 29193   chj 29196   𝐶 ccm 29199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-iota 6376  df-fv 6426  df-ov 7258  df-cm 29846
This theorem is referenced by:  cmcmlem  29854  cmcm2i  29856  cmbr2i  29859  cmbr3i  29863  pjclem1  30458  pjci  30463
  Copyright terms: Public domain W3C validator