Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cmnssmnd Structured version   Visualization version   GIF version

Theorem bj-cmnssmnd 37267
Description: Commutative monoids are monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-cmnssmnd CMnd ⊆ Mnd

Proof of Theorem bj-cmnssmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cmn 19719 . 2 CMnd = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∀𝑧 ∈ (Base‘𝑥)(𝑦(+g𝑥)𝑧) = (𝑧(+g𝑥)𝑦)}
21ssrab3 4048 1 CMnd ⊆ Mnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wral 3045  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Mndcmnd 18668  CMndccmn 19717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-ss 3934  df-cmn 19719
This theorem is referenced by:  bj-cmnssmndel  37268
  Copyright terms: Public domain W3C validator