| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cmnssmnd | Structured version Visualization version GIF version | ||
| Description: Commutative monoids are monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-cmnssmnd | ⊢ CMnd ⊆ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cmn 19688 | . 2 ⊢ CMnd = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∀𝑧 ∈ (Base‘𝑥)(𝑦(+g‘𝑥)𝑧) = (𝑧(+g‘𝑥)𝑦)} | |
| 2 | 1 | ssrab3 4041 | 1 ⊢ CMnd ⊆ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3044 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Mndcmnd 18637 CMndccmn 19686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-ss 3928 df-cmn 19688 |
| This theorem is referenced by: bj-cmnssmndel 37234 |
| Copyright terms: Public domain | W3C validator |