![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cmnssmnd | Structured version Visualization version GIF version |
Description: Commutative monoids are monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cmnssmnd | ⊢ CMnd ⊆ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cmn 19818 | . 2 ⊢ CMnd = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∀𝑧 ∈ (Base‘𝑥)(𝑦(+g‘𝑥)𝑧) = (𝑧(+g‘𝑥)𝑦)} | |
2 | 1 | ssrab3 4105 | 1 ⊢ CMnd ⊆ Mnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∀wral 3067 ⊆ wss 3976 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 +gcplusg 17305 Mndcmnd 18766 CMndccmn 19816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-cmn 19818 |
This theorem is referenced by: bj-cmnssmndel 37231 |
Copyright terms: Public domain | W3C validator |