![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmn | Structured version Visualization version GIF version |
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
iscmn.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
iscmn | ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6890 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
2 | iscmn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | eqtr4di 2788 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
4 | raleq 3320 | . . . . 5 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) | |
5 | 4 | raleqbi1dv 3331 | . . . 4 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
7 | fveq2 6890 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
8 | iscmn.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | eqtr4di 2788 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
10 | 9 | oveqd 7428 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
11 | 9 | oveqd 7428 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
12 | 10, 11 | eqeq12d 2746 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
13 | 12 | 2ralbidv 3216 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
14 | 6, 13 | bitrd 278 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
15 | df-cmn 19691 | . 2 ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥)} | |
16 | 14, 15 | elrab2 3685 | 1 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ‘cfv 6542 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 Mndcmnd 18659 CMndccmn 19689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-cmn 19691 |
This theorem is referenced by: isabl2 19699 cmnpropd 19700 iscmnd 19703 cmnmnd 19706 cmncom 19707 ghmcmn 19740 submcmn2 19748 cycsubmcmn 19798 iscrng2 20146 xrs1cmn 21185 abliso 32464 gicabl 42143 pgrpgt2nabl 47130 |
Copyright terms: Public domain | W3C validator |