MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmn Structured version   Visualization version   GIF version

Theorem iscmn 19768
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b 𝐵 = (Base‘𝐺)
iscmn.p + = (+g𝐺)
Assertion
Ref Expression
iscmn (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem iscmn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6875 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscmn.b . . . . 5 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2788 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 raleq 3302 . . . . 5 ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
54raleqbi1dv 3317 . . . 4 ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
63, 5syl 17 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
7 fveq2 6875 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 iscmn.p . . . . . . 7 + = (+g𝐺)
97, 8eqtr4di 2788 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 7420 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
119oveqd 7420 . . . . 5 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
1210, 11eqeq12d 2751 . . . 4 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥)))
13122ralbidv 3205 . . 3 (𝑔 = 𝐺 → (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
146, 13bitrd 279 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
15 df-cmn 19761 . 2 CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)}
1614, 15elrab2 3674 1 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cfv 6530  (class class class)co 7403  Basecbs 17226  +gcplusg 17269  Mndcmnd 18710  CMndccmn 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-cmn 19761
This theorem is referenced by:  isabl2  19769  cmnpropd  19770  iscmnd  19773  cmnmnd  19776  cmncom  19777  ghmcmn  19810  submcmn2  19818  cycsubmcmn  19868  iscrng2  20210  xrs1cmn  21372  abliso  32977  gicabl  43070  pgrpgt2nabl  48289
  Copyright terms: Public domain W3C validator