MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmn Structured version   Visualization version   GIF version

Theorem iscmn 19309
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b 𝐵 = (Base‘𝐺)
iscmn.p + = (+g𝐺)
Assertion
Ref Expression
iscmn (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem iscmn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscmn.b . . . . 5 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2797 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 raleq 3333 . . . . 5 ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
54raleqbi1dv 3331 . . . 4 ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
63, 5syl 17 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
7 fveq2 6756 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 iscmn.p . . . . . . 7 + = (+g𝐺)
97, 8eqtr4di 2797 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 7272 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
119oveqd 7272 . . . . 5 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
1210, 11eqeq12d 2754 . . . 4 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥)))
13122ralbidv 3122 . . 3 (𝑔 = 𝐺 → (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
146, 13bitrd 278 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
15 df-cmn 19303 . 2 CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)}
1614, 15elrab2 3620 1 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Mndcmnd 18300  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-cmn 19303
This theorem is referenced by:  isabl2  19310  cmnpropd  19311  iscmnd  19314  cmnmnd  19317  cmncom  19318  ghmcmn  19348  submcmn2  19355  cycsubmcmn  19404  iscrng2  19717  xrs1cmn  20550  abliso  31207  gicabl  40840  pgrpgt2nabl  45590
  Copyright terms: Public domain W3C validator