| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscmn | Structured version Visualization version GIF version | ||
| Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| iscmn.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| iscmn | ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 2 | iscmn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2782 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 4 | raleq 3293 | . . . . 5 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) | |
| 5 | 4 | raleqbi1dv 3308 | . . . 4 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
| 7 | fveq2 6840 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 8 | iscmn.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 10 | 9 | oveqd 7386 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
| 11 | 9 | oveqd 7386 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
| 12 | 10, 11 | eqeq12d 2745 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 13 | 12 | 2ralbidv 3199 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 14 | 6, 13 | bitrd 279 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 15 | df-cmn 19696 | . 2 ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥)} | |
| 16 | 14, 15 | elrab2 3659 | 1 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Mndcmnd 18643 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-cmn 19696 |
| This theorem is referenced by: isabl2 19704 cmnpropd 19705 iscmnd 19708 cmnmnd 19711 cmncom 19712 ghmcmn 19745 submcmn2 19753 cycsubmcmn 19803 iscrng2 20172 xrs1cmn 21384 abliso 33020 gicabl 43081 pgrpgt2nabl 48347 |
| Copyright terms: Public domain | W3C validator |