Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscmn | Structured version Visualization version GIF version |
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
iscmn.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
iscmn | ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
2 | iscmn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | eqtr4di 2797 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
4 | raleq 3333 | . . . . 5 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) | |
5 | 4 | raleqbi1dv 3331 | . . . 4 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
7 | fveq2 6756 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
8 | iscmn.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
10 | 9 | oveqd 7272 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
11 | 9 | oveqd 7272 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
12 | 10, 11 | eqeq12d 2754 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
13 | 12 | 2ralbidv 3122 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
14 | 6, 13 | bitrd 278 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
15 | df-cmn 19303 | . 2 ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥)} | |
16 | 14, 15 | elrab2 3620 | 1 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mndcmnd 18300 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-cmn 19303 |
This theorem is referenced by: isabl2 19310 cmnpropd 19311 iscmnd 19314 cmnmnd 19317 cmncom 19318 ghmcmn 19348 submcmn2 19355 cycsubmcmn 19404 iscrng2 19717 xrs1cmn 20550 abliso 31207 gicabl 40840 pgrpgt2nabl 45590 |
Copyright terms: Public domain | W3C validator |