Detailed syntax breakdown of Definition df-cnop
Step | Hyp | Ref
| Expression |
1 | | ccop 29209 |
. 2
class
ContOp |
2 | | vw |
. . . . . . . . . . . 12
setvar 𝑤 |
3 | 2 | cv 1538 |
. . . . . . . . . . 11
class 𝑤 |
4 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
6 | | cmv 29188 |
. . . . . . . . . . 11
class
−ℎ |
7 | 3, 5, 6 | co 7255 |
. . . . . . . . . 10
class (𝑤 −ℎ
𝑥) |
8 | | cno 29186 |
. . . . . . . . . 10
class
normℎ |
9 | 7, 8 | cfv 6418 |
. . . . . . . . 9
class
(normℎ‘(𝑤 −ℎ 𝑥)) |
10 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
11 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
12 | | clt 10940 |
. . . . . . . . 9
class
< |
13 | 9, 11, 12 | wbr 5070 |
. . . . . . . 8
wff
(normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 |
14 | | vt |
. . . . . . . . . . . . 13
setvar 𝑡 |
15 | 14 | cv 1538 |
. . . . . . . . . . . 12
class 𝑡 |
16 | 3, 15 | cfv 6418 |
. . . . . . . . . . 11
class (𝑡‘𝑤) |
17 | 5, 15 | cfv 6418 |
. . . . . . . . . . 11
class (𝑡‘𝑥) |
18 | 16, 17, 6 | co 7255 |
. . . . . . . . . 10
class ((𝑡‘𝑤) −ℎ (𝑡‘𝑥)) |
19 | 18, 8 | cfv 6418 |
. . . . . . . . 9
class
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) |
20 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
21 | 20 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
22 | 19, 21, 12 | wbr 5070 |
. . . . . . . 8
wff
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦 |
23 | 13, 22 | wi 4 |
. . . . . . 7
wff
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) |
24 | | chba 29182 |
. . . . . . 7
class
ℋ |
25 | 23, 2, 24 | wral 3063 |
. . . . . 6
wff
∀𝑤 ∈
ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) |
26 | | crp 12659 |
. . . . . 6
class
ℝ+ |
27 | 25, 10, 26 | wrex 3064 |
. . . . 5
wff
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) |
28 | 27, 20, 26 | wral 3063 |
. . . 4
wff
∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) |
29 | 28, 4, 24 | wral 3063 |
. . 3
wff
∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) |
30 | | cmap 8573 |
. . . 4
class
↑m |
31 | 24, 24, 30 | co 7255 |
. . 3
class ( ℋ
↑m ℋ) |
32 | 29, 14, 31 | crab 3067 |
. 2
class {𝑡 ∈ ( ℋ
↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} |
33 | 1, 32 | wceq 1539 |
1
wff ContOp =
{𝑡 ∈ ( ℋ
↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} |