HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnop Structured version   Visualization version   GIF version

Theorem elcnop 30120
Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnop (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝑇

Proof of Theorem elcnop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6755 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑤) = (𝑇𝑤))
2 fveq1 6755 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
31, 2oveq12d 7273 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑤) − (𝑡𝑥)) = ((𝑇𝑤) − (𝑇𝑥)))
43fveq2d 6760 . . . . . . 7 (𝑡 = 𝑇 → (norm‘((𝑡𝑤) − (𝑡𝑥))) = (norm‘((𝑇𝑤) − (𝑇𝑥))))
54breq1d 5080 . . . . . 6 (𝑡 = 𝑇 → ((norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦 ↔ (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦))
65imbi2d 340 . . . . 5 (𝑡 = 𝑇 → (((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
76rexralbidv 3229 . . . 4 (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
872ralbidv 3122 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
9 df-cnop 30103 . . 3 ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
108, 9elrab2 3620 . 2 (𝑇 ∈ ContOp ↔ (𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
11 ax-hilex 29262 . . . 4 ℋ ∈ V
1211, 11elmap 8617 . . 3 (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ)
1312anbi1i 623 . 2 ((𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
1410, 13bitri 274 1 (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   < clt 10940  +crp 12659  chba 29182  normcno 29186   cmv 29188  ContOpccop 29209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-cnop 30103
This theorem is referenced by:  cnopc  30176  0cnop  30242  idcnop  30244  lnopconi  30297
  Copyright terms: Public domain W3C validator