![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elcnop | Structured version Visualization version GIF version |
Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elcnop | ⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6883 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑤) = (𝑇‘𝑤)) | |
2 | fveq1 6883 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
3 | 1, 2 | oveq12d 7422 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑤) −ℎ (𝑡‘𝑥)) = ((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) |
4 | 3 | fveq2d 6888 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) = (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥)))) |
5 | 4 | breq1d 5151 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦 ↔ (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦)) |
6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) ↔ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
7 | 6 | rexralbidv 3214 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
8 | 7 | 2ralbidv 3212 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
9 | df-cnop 31598 | . . 3 ⊢ ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} | |
10 | 8, 9 | elrab2 3681 | . 2 ⊢ (𝑇 ∈ ContOp ↔ (𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
11 | ax-hilex 30757 | . . . 4 ⊢ ℋ ∈ V | |
12 | 11, 11 | elmap 8864 | . . 3 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
13 | 12 | anbi1i 623 | . 2 ⊢ ((𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
14 | 10, 13 | bitri 275 | 1 ⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 class class class wbr 5141 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 ↑m cmap 8819 < clt 11249 ℝ+crp 12977 ℋchba 30677 normℎcno 30681 −ℎ cmv 30683 ContOpccop 30704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-hilex 30757 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-cnop 31598 |
This theorem is referenced by: cnopc 31671 0cnop 31737 idcnop 31739 lnopconi 31792 |
Copyright terms: Public domain | W3C validator |