| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elcnop | Structured version Visualization version GIF version | ||
| Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elcnop | ⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6857 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑤) = (𝑇‘𝑤)) | |
| 2 | fveq1 6857 | . . . . . . . . 9 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
| 3 | 1, 2 | oveq12d 7405 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑤) −ℎ (𝑡‘𝑥)) = ((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) |
| 4 | 3 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) = (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥)))) |
| 5 | 4 | breq1d 5117 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦 ↔ (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦)) |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) ↔ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
| 7 | 6 | rexralbidv 3203 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
| 8 | 7 | 2ralbidv 3201 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
| 9 | df-cnop 31769 | . . 3 ⊢ ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} | |
| 10 | 8, 9 | elrab2 3662 | . 2 ⊢ (𝑇 ∈ ContOp ↔ (𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
| 11 | ax-hilex 30928 | . . . 4 ⊢ ℋ ∈ V | |
| 12 | 11, 11 | elmap 8844 | . . 3 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
| 13 | 12 | anbi1i 624 | . 2 ⊢ ((𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
| 14 | 10, 13 | bitri 275 | 1 ⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 < clt 11208 ℝ+crp 12951 ℋchba 30848 normℎcno 30852 −ℎ cmv 30854 ContOpccop 30875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-cnop 31769 |
| This theorem is referenced by: cnopc 31842 0cnop 31908 idcnop 31910 lnopconi 31963 |
| Copyright terms: Public domain | W3C validator |