Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcno Structured version   Visualization version   GIF version

Theorem hhcno 29676
 Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
hhcno ContOp = (𝐽 Cn 𝐽)

Proof of Theorem hhcno
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3141 . 2 {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnop 29612 . 2 ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 28968 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 28915 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2859 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 713 . . . . . . . . . . 11 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 5057 . . . . . . . . . 10 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelrn 6830 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℋ)
10 ffvelrn 6830 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℋ)
119, 10anim12dan 621 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ))
123hilmetdval 28968 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑥) − (𝑡𝑤))))
13 normsub 28915 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → (norm‘((𝑡𝑥) − (𝑡𝑤))) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1412, 13eqtrd 2859 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1511, 14syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1615anassrs 471 . . . . . . . . . . 11 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1716breq1d 5057 . . . . . . . . . 10 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦 ↔ (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
188, 17imbi12d 348 . . . . . . . . 9 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
1918ralbidva 3190 . . . . . . . 8 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019rexbidv 3289 . . . . . . 7 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120ralbidv 3191 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidva 3190 . . . . 5 (𝑡: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322pm5.32i 578 . . . 4 ((𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
243hilxmet 28967 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
25 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2625, 25metcn 23139 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ 𝐷 ∈ (∞Met‘ ℋ)) → (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦))))
2724, 24, 26mp2an 691 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦)))
28 ax-hilex 28771 . . . . . 6 ℋ ∈ V
2928, 28elmap 8418 . . . . 5 (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ)
3029anbi1i 626 . . . 4 ((𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3123, 27, 303bitr4i 306 . . 3 (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3231abbi2i 2955 . 2 (𝐽 Cn 𝐽) = {𝑡 ∣ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
331, 2, 323eqtr4i 2857 1 ContOp = (𝐽 Cn 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {cab 2802  ∀wral 3132  ∃wrex 3133  {crab 3136   class class class wbr 5047   ∘ ccom 5540  ⟶wf 6332  ‘cfv 6336  (class class class)co 7138   ↑m cmap 8389   < clt 10660  ℝ+crp 12375  ∞Metcxmet 20516  MetOpencmopn 20521   Cn ccn 21818   ℋchba 28691  normℎcno 28695   −ℎ cmv 28697  ContOpccop 28718 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602  ax-hilex 28771  ax-hfvadd 28772  ax-hvcom 28773  ax-hvass 28774  ax-hv0cl 28775  ax-hvaddid 28776  ax-hfvmul 28777  ax-hvmulid 28778  ax-hvmulass 28779  ax-hvdistr1 28780  ax-hvdistr2 28781  ax-hvmul0 28782  ax-hfi 28851  ax-his1 28854  ax-his2 28855  ax-his3 28856  ax-his4 28857 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-n0 11884  df-z 11968  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-seq 13363  df-exp 13424  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-topgen 16706  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-top 21488  df-topon 21505  df-bases 21540  df-cn 21821  df-cnp 21822  df-grpo 28265  df-gid 28266  df-ginv 28267  df-gdiv 28268  df-ablo 28317  df-vc 28331  df-nv 28364  df-va 28367  df-ba 28368  df-sm 28369  df-0v 28370  df-vs 28371  df-nmcv 28372  df-ims 28373  df-hnorm 28740  df-hvsub 28743  df-cnop 29612 This theorem is referenced by:  hmopidmchi  29923
 Copyright terms: Public domain W3C validator