Step | Hyp | Ref
| Expression |
1 | | df-rab 3433 |
. 2
β’ {π‘ β ( β
βm β) β£ βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦)} = {π‘ β£ (π‘ β ( β βm β)
β§ βπ₯ β
β βπ¦ β
β+ βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))} |
2 | | df-cnop 31080 |
. 2
β’ ContOp =
{π‘ β ( β
βm β) β£ βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦)} |
3 | | hhcn.1 |
. . . . . . . . . . . . . 14
β’ π· = (normβ
β ββ ) |
4 | 3 | hilmetdval 30436 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ π€ β β) β (π₯π·π€) = (normββ(π₯ ββ
π€))) |
5 | | normsub 30383 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ π€ β β) β
(normββ(π₯ ββ π€)) =
(normββ(π€ ββ π₯))) |
6 | 4, 5 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ ((π₯ β β β§ π€ β β) β (π₯π·π€) = (normββ(π€ ββ
π₯))) |
7 | 6 | adantll 712 |
. . . . . . . . . . 11
β’ (((π‘: ββΆ β β§
π₯ β β) β§
π€ β β) β
(π₯π·π€) = (normββ(π€ ββ
π₯))) |
8 | 7 | breq1d 5157 |
. . . . . . . . . 10
β’ (((π‘: ββΆ β β§
π₯ β β) β§
π€ β β) β
((π₯π·π€) < π§ β (normββ(π€ ββ
π₯)) < π§)) |
9 | | ffvelcdm 7080 |
. . . . . . . . . . . . . 14
β’ ((π‘: ββΆ β β§
π₯ β β) β
(π‘βπ₯) β β) |
10 | | ffvelcdm 7080 |
. . . . . . . . . . . . . 14
β’ ((π‘: ββΆ β β§
π€ β β) β
(π‘βπ€) β β) |
11 | 9, 10 | anim12dan 619 |
. . . . . . . . . . . . 13
β’ ((π‘: ββΆ β β§
(π₯ β β β§
π€ β β)) β
((π‘βπ₯) β β β§ (π‘βπ€) β β)) |
12 | 3 | hilmetdval 30436 |
. . . . . . . . . . . . . 14
β’ (((π‘βπ₯) β β β§ (π‘βπ€) β β) β ((π‘βπ₯)π·(π‘βπ€)) = (normββ((π‘βπ₯) ββ (π‘βπ€)))) |
13 | | normsub 30383 |
. . . . . . . . . . . . . 14
β’ (((π‘βπ₯) β β β§ (π‘βπ€) β β) β
(normββ((π‘βπ₯) ββ (π‘βπ€))) = (normββ((π‘βπ€) ββ (π‘βπ₯)))) |
14 | 12, 13 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ (((π‘βπ₯) β β β§ (π‘βπ€) β β) β ((π‘βπ₯)π·(π‘βπ€)) = (normββ((π‘βπ€) ββ (π‘βπ₯)))) |
15 | 11, 14 | syl 17 |
. . . . . . . . . . . 12
β’ ((π‘: ββΆ β β§
(π₯ β β β§
π€ β β)) β
((π‘βπ₯)π·(π‘βπ€)) = (normββ((π‘βπ€) ββ (π‘βπ₯)))) |
16 | 15 | anassrs 468 |
. . . . . . . . . . 11
β’ (((π‘: ββΆ β β§
π₯ β β) β§
π€ β β) β
((π‘βπ₯)π·(π‘βπ€)) = (normββ((π‘βπ€) ββ (π‘βπ₯)))) |
17 | 16 | breq1d 5157 |
. . . . . . . . . 10
β’ (((π‘: ββΆ β β§
π₯ β β) β§
π€ β β) β
(((π‘βπ₯)π·(π‘βπ€)) < π¦ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦)) |
18 | 8, 17 | imbi12d 344 |
. . . . . . . . 9
β’ (((π‘: ββΆ β β§
π₯ β β) β§
π€ β β) β
(((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦) β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
19 | 18 | ralbidva 3175 |
. . . . . . . 8
β’ ((π‘: ββΆ β β§
π₯ β β) β
(βπ€ β β
((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦) β βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
20 | 19 | rexbidv 3178 |
. . . . . . 7
β’ ((π‘: ββΆ β β§
π₯ β β) β
(βπ§ β
β+ βπ€ β β ((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦) β βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
21 | 20 | ralbidv 3177 |
. . . . . 6
β’ ((π‘: ββΆ β β§
π₯ β β) β
(βπ¦ β
β+ βπ§ β β+ βπ€ β β ((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦) β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
22 | 21 | ralbidva 3175 |
. . . . 5
β’ (π‘: ββΆ β β
(βπ₯ β β
βπ¦ β
β+ βπ§ β β+ βπ€ β β ((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦) β βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
23 | 22 | pm5.32i 575 |
. . . 4
β’ ((π‘: ββΆ β β§
βπ₯ β β
βπ¦ β
β+ βπ§ β β+ βπ€ β β ((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦)) β (π‘: ββΆ β β§ βπ₯ β β βπ¦ β β+
βπ§ β
β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
24 | 3 | hilxmet 30435 |
. . . . 5
β’ π· β (βMetβ
β) |
25 | | hhcn.2 |
. . . . . 6
β’ π½ = (MetOpenβπ·) |
26 | 25, 25 | metcn 24043 |
. . . . 5
β’ ((π· β (βMetβ
β) β§ π· β
(βMetβ β)) β (π‘ β (π½ Cn π½) β (π‘: ββΆ β β§ βπ₯ β β βπ¦ β β+
βπ§ β
β+ βπ€ β β ((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦)))) |
27 | 24, 24, 26 | mp2an 690 |
. . . 4
β’ (π‘ β (π½ Cn π½) β (π‘: ββΆ β β§ βπ₯ β β βπ¦ β β+
βπ§ β
β+ βπ€ β β ((π₯π·π€) < π§ β ((π‘βπ₯)π·(π‘βπ€)) < π¦))) |
28 | | ax-hilex 30239 |
. . . . . 6
β’ β
β V |
29 | 28, 28 | elmap 8861 |
. . . . 5
β’ (π‘ β ( β
βm β) β π‘: ββΆ β) |
30 | 29 | anbi1i 624 |
. . . 4
β’ ((π‘ β ( β
βm β) β§ βπ₯ β β βπ¦ β β+ βπ§ β β+
βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦)) β (π‘: ββΆ β β§ βπ₯ β β βπ¦ β β+
βπ§ β
β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
31 | 23, 27, 30 | 3bitr4i 302 |
. . 3
β’ (π‘ β (π½ Cn π½) β (π‘ β ( β βm β)
β§ βπ₯ β
β βπ¦ β
β+ βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))) |
32 | 31 | eqabi 2869 |
. 2
β’ (π½ Cn π½) = {π‘ β£ (π‘ β ( β βm β)
β§ βπ₯ β
β βπ¦ β
β+ βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦))} |
33 | 1, 2, 32 | 3eqtr4i 2770 |
1
β’ ContOp =
(π½ Cn π½) |