HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcno Structured version   Visualization version   GIF version

Theorem hhcno 30167
Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
hhcno ContOp = (𝐽 Cn 𝐽)

Proof of Theorem hhcno
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3072 . 2 {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnop 30103 . 2 ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 29459 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 29406 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2778 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 710 . . . . . . . . . . 11 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 5080 . . . . . . . . . 10 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelrn 6941 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℋ)
10 ffvelrn 6941 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℋ)
119, 10anim12dan 618 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ))
123hilmetdval 29459 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑥) − (𝑡𝑤))))
13 normsub 29406 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → (norm‘((𝑡𝑥) − (𝑡𝑤))) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1412, 13eqtrd 2778 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℋ ∧ (𝑡𝑤) ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1511, 14syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1615anassrs 467 . . . . . . . . . . 11 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)𝐷(𝑡𝑤)) = (norm‘((𝑡𝑤) − (𝑡𝑥))))
1716breq1d 5080 . . . . . . . . . 10 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦 ↔ (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
188, 17imbi12d 344 . . . . . . . . 9 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
1918ralbidva 3119 . . . . . . . 8 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019rexbidv 3225 . . . . . . 7 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120ralbidv 3120 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidva 3119 . . . . 5 (𝑡: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322pm5.32i 574 . . . 4 ((𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
243hilxmet 29458 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
25 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
2625, 25metcn 23605 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ 𝐷 ∈ (∞Met‘ ℋ)) → (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦))))
2724, 24, 26mp2an 688 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)𝐷(𝑡𝑤)) < 𝑦)))
28 ax-hilex 29262 . . . . . 6 ℋ ∈ V
2928, 28elmap 8617 . . . . 5 (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ)
3029anbi1i 623 . . . 4 ((𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3123, 27, 303bitr4i 302 . . 3 (𝑡 ∈ (𝐽 Cn 𝐽) ↔ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3231abbi2i 2878 . 2 (𝐽 Cn 𝐽) = {𝑡 ∣ (𝑡 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
331, 2, 323eqtr4i 2776 1 ContOp = (𝐽 Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  {crab 3067   class class class wbr 5070  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   < clt 10940  +crp 12659  ∞Metcxmet 20495  MetOpencmopn 20500   Cn ccn 22283  chba 29182  normcno 29186   cmv 29188  ContOpccop 29209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-cnp 22287  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-hnorm 29231  df-hvsub 29234  df-cnop 30103
This theorem is referenced by:  hmopidmchi  30414
  Copyright terms: Public domain W3C validator