Home | Metamath
Proof Explorer Theorem List (p. 317 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | grplsmid 31601 | The direct sum of an element 𝑋 of a subgroup 𝐴 is the subgroup itself. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → ({𝑋} ⊕ 𝐴) = 𝐴) | ||
Theorem | quslsm 31602 | Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} ⊕ 𝑆)) | ||
Theorem | qusima 31603* | The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐸‘𝐻) = (𝐹 “ 𝐻)) | ||
Theorem | nsgqus0 31604 | A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) ⇒ ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) | ||
Theorem | nsgmgclem 31605* | Lemma for nsgmgc 31606. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝐹 ∈ (SubGrp‘𝑄)) ⇒ ⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺)) | ||
Theorem | nsgmgc 31606* | There is a monotone Galois connection between the lattice of subgroups of a group 𝐺 containing a normal subgroup 𝑁 and the lattice of subgroups of the quotient group 𝐺 / 𝑁. This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ 𝐽 = (𝑉MGalConn𝑊) & ⊢ 𝑉 = (toInc‘𝑆) & ⊢ 𝑊 = (toInc‘𝑇) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐸𝐽𝐹) | ||
Theorem | nsgqusf1olem1 31607* | Lemma for nsgqusf1o 31610. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ 𝑇) | ||
Theorem | nsgqusf1olem2 31608* | Lemma for nsgqusf1o 31610. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → ran 𝐸 = 𝑇) | ||
Theorem | nsgqusf1olem3 31609* | Lemma for nsgqusf1o 31610. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → ran 𝐹 = 𝑆) | ||
Theorem | nsgqusf1o 31610* | The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} & ⊢ 𝑇 = (SubGrp‘𝑄) & ⊢ ≤ = (le‘(toInc‘𝑆)) & ⊢ ≲ = (le‘(toInc‘𝑇)) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) & ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) | ||
Theorem | intlidl 31611 | The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.) |
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∩ 𝐶 ∈ (LIdeal‘𝑅)) | ||
Theorem | rhmpreimaidl 31612 | The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝐼) | ||
Theorem | kerlidl 31613 | The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (◡𝐹 “ { 0 }) ∈ 𝐼) | ||
Theorem | 0ringidl 31614 | The zero ideal is the only ideal of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{ 0 }}) | ||
Theorem | elrspunidl 31615* | Elementhood to the span of a union of ideals. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 𝑁 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ⊆ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘∪ 𝑆) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝑆)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg 𝑎) ∧ ∀𝑘 ∈ 𝑆 (𝑎‘𝑘) ∈ 𝑘))) | ||
Theorem | lidlincl 31616 | Ideals are closed under intersection. (Contributed by Thierry Arnoux, 5-Jul-2024.) |
⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐽 ∈ 𝑈) → (𝐼 ∩ 𝐽) ∈ 𝑈) | ||
Theorem | idlinsubrg 31617 | The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑉 = (LIdeal‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐼 ∈ 𝑈) → (𝐼 ∩ 𝐴) ∈ 𝑉) | ||
Theorem | rhmimaidl 31618 | The image of an ideal 𝐼 by a surjective ring homomorphism 𝐹 is an ideal. (Contributed by Thierry Arnoux, 6-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = (LIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵 ∧ 𝐼 ∈ 𝑇) → (𝐹 “ 𝐼) ∈ 𝑈) | ||
Syntax | cprmidl 31619 | Extend class notation with the class of prime ideals. |
class PrmIdeal | ||
Definition | df-prmidl 31620* | Define the class of prime ideals of a ring 𝑅. A proper ideal 𝐼 of 𝑅 is prime if whenever 𝐴𝐵 ⊆ 𝐼 for ideals 𝐴 and 𝐵, either 𝐴 ⊆ 𝐼 or 𝐵 ⊆ 𝐼. The more familiar definition using elements rather than ideals is equivalent provided 𝑅 is commutative; see prmidl2 31625 and isprmidlc 31632. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 14-Jan-2024.) |
⊢ PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | prmidlval 31621* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | isprmidl 31622* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | ||
Theorem | prmidlnr 31623 | A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ≠ 𝐵) | ||
Theorem | prmidl 31624* | The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) | ||
Theorem | prmidl2 31625* | A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 36237 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅)) | ||
Theorem | idlmulssprm 31626 | Let 𝑃 be a prime ideal containing the product (𝐼 × 𝐽) of two ideals 𝐼 and 𝐽. Then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
⊢ × = (LSSum‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) ⇒ ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) | ||
Theorem | pridln1 31627 | A proper ideal cannot contain the ring unity. (Contributed by Thierry Arnoux, 9-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ¬ 1 ∈ 𝐼) | ||
Theorem | prmidlidl 31628 | A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) | ||
Theorem | prmidlssidl 31629 | Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅)) | ||
Theorem | lidlnsg 31630 | An ideal is a normal subgroup. (Contributed by Thierry Arnoux, 14-Jan-2024.) |
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅)) | ||
Theorem | cringm4 31631 | Commutative/associative law for commutative ring. (Contributed by Thierry Arnoux, 14-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 · 𝑌) · (𝑍 · 𝑊)) = ((𝑋 · 𝑍) · (𝑌 · 𝑊))) | ||
Theorem | isprmidlc 31632* | The predicate "is prime ideal" for commutative rings. Alternate definition for commutative rings. See definition in [Lang] p. 92. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))))) | ||
Theorem | prmidlc 31633 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) | ||
Theorem | 0ringprmidl 31634 | The trivial ring does not have any prime ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (PrmIdeal‘𝑅) = ∅) | ||
Theorem | prmidl0 31635 | The zero ideal of a commutative ring 𝑅 is a prime ideal if and only if 𝑅 is an integral domain. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ { 0 } ∈ (PrmIdeal‘𝑅)) ↔ 𝑅 ∈ IDomn) | ||
Theorem | rhmpreimaprmidl 31636 | The preimage of a prime ideal by a ring homomorphism is a prime ideal. (Contributed by Thierry Arnoux, 29-Jun-2024.) |
⊢ 𝑃 = (PrmIdeal‘𝑅) ⇒ ⊢ (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝐽 ∈ (PrmIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝑃) | ||
Theorem | qsidomlem1 31637 | If the quotient ring of a commutative ring relative to an ideal is an integral domain, that ideal must be prime. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅)) | ||
Theorem | qsidomlem2 31638 | A quotient by a prime ideal is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn) | ||
Theorem | qsidom 31639 | An ideal 𝐼 in the commutative ring 𝑅 is prime if and only if the factor ring 𝑄 is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑄 ∈ IDomn ↔ 𝐼 ∈ (PrmIdeal‘𝑅))) | ||
Syntax | cmxidl 31640 | Extend class notation with the class of maximal ideals. |
class MaxIdeal | ||
Definition | df-mxidl 31641* | Define the class of maximal ideals of a ring 𝑅. A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) | ||
Theorem | mxidlval 31642* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) | ||
Theorem | ismxidl 31643* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝐵))))) | ||
Theorem | mxidlidl 31644 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) | ||
Theorem | mxidlnr 31645 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) | ||
Theorem | mxidlmax 31646 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) | ||
Theorem | mxidln1 31647 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ 1 ∈ 𝑀) | ||
Theorem | mxidlnzr 31648 | A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ NzRing) | ||
Theorem | mxidlprm 31649 | Every maximal ideal is prime. Statement in [Lang] p. 92. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ × = (LSSum‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅)) | ||
Theorem | ssmxidllem 31650* | The set 𝑃 used in the proof of ssmxidl 31651 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ≠ 𝐵) & ⊢ (𝜑 → 𝑍 ⊆ 𝑃) & ⊢ (𝜑 → 𝑍 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑍 ∈ 𝑃) | ||
Theorem | ssmxidl 31651* | Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) | ||
Theorem | krull 31652* | Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) | ||
Theorem | mxidlnzrb 31653* | A ring is nonzero if and only if it has maximal ideals. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))) | ||
Syntax | cidlsrg 31654 | Extend class notation with the semiring of ideals of a ring. |
class IDLsrg | ||
Definition | df-idlsrg 31655* | Define a structure for the ideals of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ IDLsrg = (𝑟 ∈ V ↦ ⦋(LIdeal‘𝑟) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (LSSum‘𝑟)〉, 〈(.r‘ndx), (𝑖 ∈ 𝑏, 𝑗 ∈ 𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝑏 ↦ {𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
Theorem | idlsrgstr 31656 | A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;10〉 | ||
Theorem | idlsrgval 31657* | Lemma for idlsrgbas 31658 through idlsrgtset 31662. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (IDLsrg‘𝑅) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), ⊕ 〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
Theorem | idlsrgbas 31658 | Baae of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) | ||
Theorem | idlsrgplusg 31659 | Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → ⊕ = (+g‘𝑆)) | ||
Theorem | idlsrg0g 31660 | The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } = (0g‘𝑆)) | ||
Theorem | idlsrgmulr 31661* | Multiplicative operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑖 ∈ 𝐵, 𝑗 ∈ 𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗))) = (.r‘𝑆)) | ||
Theorem | idlsrgtset 31662* | Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopSet‘𝑆)) | ||
Theorem | idlsrgmulrval 31663 | Value of the ring multiplication for the ideals of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼 · 𝐽))) | ||
Theorem | idlsrgmulrcl 31664 | Ideals of a ring 𝑅 are closed under multiplication. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ∈ 𝐵) | ||
Theorem | idlsrgmulrss1 31665 | In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐼) | ||
Theorem | idlsrgmulrss2 31666 | The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) | ||
Theorem | idlsrgmulrssin 31667 | In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ (𝐼 ∩ 𝐽)) | ||
Theorem | idlsrgmnd 31668 | The ideals of a ring form a monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ Mnd) | ||
Theorem | idlsrgcmnd 31669 | The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ CMnd) | ||
Syntax | cufd 31670 | Class of unique factorization domains. |
class UFD | ||
Definition | df-ufd 31671* | Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv 20110 this is equivalent to being a domain) such that every prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)} | ||
Theorem | isufd 31672* | The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐼 = (PrmIdeal‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) ⇒ ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖 ∈ 𝐼 (𝑖 ∩ 𝑃) ≠ ∅))) | ||
Theorem | rprmval 31673* | The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) | ||
Theorem | isrprm 31674* | Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) | ||
Theorem | asclmulg 31675 | Apply group multiplication to the algebra scalars. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ↑ = (.g‘𝑊) & ⊢ ∗ = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾) → (𝐴‘(𝑁 ∗ 𝑋)) = (𝑁 ↑ (𝐴‘𝑋))) | ||
Theorem | fply1 31676 | Conditions for a function to be an univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (Base‘(Poly1‘𝑅)) & ⊢ (𝜑 → 𝐹:(ℕ0 ↑m 1o)⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝑃) | ||
Theorem | ply1scleq 31677 | Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐴‘𝐸) = (𝐴‘𝐹) ↔ 𝐸 = 𝐹)) | ||
Theorem | ply1chr 31678 | The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (chr‘𝑃) = (chr‘𝑅)) | ||
Theorem | ply1fermltl 31679 | Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑃) & ⊢ 𝑊 = (Poly1‘𝑍) & ⊢ 𝑋 = (var1‘𝑍) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐶 = (algSc‘𝑊) & ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐸 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) | ||
Theorem | sra1r 31680 | The multiplicative neutral element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 1 = (1r‘𝑊)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → 1 = (1r‘𝐴)) | ||
Theorem | sraring 31681 | Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) | ||
Theorem | sradrng 31682 | Condition for a subring algebra to be a division ring. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ DivRing) | ||
Theorem | srasubrg 31683 | A subring of the original structure is also a subring of the constructed subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑊)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐴)) | ||
Theorem | sralvec 31684 | Given a sub division ring 𝐹 of a division ring 𝐸, 𝐸 may be considered as a vector space over 𝐹, which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) ⇒ ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec) | ||
Theorem | srafldlvec 31685 | Given a subfield 𝐹 of a field 𝐸, 𝐸 may be considered as a vector space over 𝐹, which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) ⇒ ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec) | ||
Theorem | drgext0g 31686 | The additive neutral element of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) ⇒ ⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐵)) | ||
Theorem | drgextvsca 31687 | The scalar multiplication operation of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) ⇒ ⊢ (𝜑 → (.r‘𝐸) = ( ·𝑠 ‘𝐵)) | ||
Theorem | drgext0gsca 31688 | The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) ⇒ ⊢ (𝜑 → (0g‘𝐵) = (0g‘(Scalar‘𝐵))) | ||
Theorem | drgextsubrg 31689 | The scalar field is a subring of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐵)) | ||
Theorem | drgextlsp 31690 | The scalar field is a subspace of a subring algebra. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝐵)) | ||
Theorem | drgextgsum 31691* | Group sum in a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023.) |
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ 𝑌)) = (𝐵 Σg (𝑖 ∈ 𝑋 ↦ 𝑌))) | ||
Theorem | lvecdimfi 31692 | Finite version of lvecdim 20428 which does not require the axiom of choice. The axiom of choice is used in acsmapd 18281, which is required in the infinite case. Suggested by Gérard Lang. (Contributed by Thierry Arnoux, 24-May-2023.) |
⊢ 𝐽 = (LBasis‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑆 ∈ 𝐽) & ⊢ (𝜑 → 𝑇 ∈ 𝐽) & ⊢ (𝜑 → 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
Syntax | cldim 31693 | Extend class notation with the dimension of a vector space. |
class dim | ||
Definition | df-dim 31694 | Define the dimension of a vector space as the cardinality of its bases. Note that by lvecdim 20428, all bases are equinumerous. (Contributed by Thierry Arnoux, 6-May-2023.) |
⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) | ||
Theorem | dimval 31695 | The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.) |
⊢ 𝐽 = (LBasis‘𝐹) ⇒ ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = (♯‘𝑆)) | ||
Theorem | dimvalfi 31696 | The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 31695 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.) |
⊢ 𝐽 = (LBasis‘𝐹) ⇒ ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆)) | ||
Theorem | dimcl 31697 | Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ (𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*) | ||
Theorem | lvecdim0i 31698 | A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
⊢ 0 = (0g‘𝑉) ⇒ ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) | ||
Theorem | lvecdim0 31699 | A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
⊢ 0 = (0g‘𝑉) ⇒ ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) | ||
Theorem | lssdimle 31700 | The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |