| Metamath
Proof Explorer Theorem List (p. 317 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | h1datom 31601 | A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0ℋ))) | ||
| Definition | df-cm 31602* | Define the commutes relation (on the Hilbert lattice). Definition of commutes in [Kalmbach] p. 20, who uses the notation xCy for "x commutes with y." See cmbri 31609 for membership relation. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐶ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} | ||
| Theorem | cmbr 31603 | Binary relation expressing 𝐴 commutes with 𝐵. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))))) | ||
| Theorem | pjoml2i 31604 | Variation of orthomodular law. Definition in [Kalmbach] p. 22. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = 𝐵) | ||
| Theorem | pjoml3i 31605 | Variation of orthomodular law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵) | ||
| Theorem | pjoml4i 31606 | Variation of orthomodular law. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) = (𝐴 ∨ℋ 𝐵) | ||
| Theorem | pjoml5i 31607 | The orthomodular law. Remark in [Kalmbach] p. 22. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵) | ||
| Theorem | pjoml6i 31608* | An equivalent of the orthomodular law. Theorem 29.13(e) of [MaedaMaeda] p. 132. (Contributed by NM, 30-May-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → ∃𝑥 ∈ Cℋ (𝐴 ⊆ (⊥‘𝑥) ∧ (𝐴 ∨ℋ 𝑥) = 𝐵)) | ||
| Theorem | cmbri 31609 | Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) | ||
| Theorem | cmcmlem 31610 | Commutation is symmetric. Theorem 3.4 of [Beran] p. 45. (Contributed by NM, 3-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴) | ||
| Theorem | cmcmi 31611 | Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴) | ||
| Theorem | cmcm2i 31612 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ (⊥‘𝐵)) | ||
| Theorem | cmcm3i 31613 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (⊥‘𝐴) 𝐶ℋ 𝐵) | ||
| Theorem | cmcm4i 31614 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (⊥‘𝐴) 𝐶ℋ (⊥‘𝐵)) | ||
| Theorem | cmbr2i 31615 | Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ (⊥‘𝐵)))) | ||
| Theorem | cmcmii 31616 | Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 ⇒ ⊢ 𝐵 𝐶ℋ 𝐴 | ||
| Theorem | cmcm2ii 31617 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 ⇒ ⊢ 𝐴 𝐶ℋ (⊥‘𝐵) | ||
| Theorem | cmcm3ii 31618 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 ⇒ ⊢ (⊥‘𝐴) 𝐶ℋ 𝐵 | ||
| Theorem | cmbr3i 31619 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵)) | ||
| Theorem | cmbr4i 31620 | Alternate definition for the commutes relation. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ⊆ 𝐵) | ||
| Theorem | lecmi 31621 | Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 𝐶ℋ 𝐵) | ||
| Theorem | lecmii 31622 | Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 𝐶ℋ 𝐵 | ||
| Theorem | cmj1i 31623 | A Hilbert lattice element commutes with its join. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐴 𝐶ℋ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | cmj2i 31624 | A Hilbert lattice element commutes with its join. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐵 𝐶ℋ (𝐴 ∨ℋ 𝐵) | ||
| Theorem | cmm1i 31625 | A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐴 𝐶ℋ (𝐴 ∩ 𝐵) | ||
| Theorem | cmm2i 31626 | A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ 𝐵 𝐶ℋ (𝐴 ∩ 𝐵) | ||
| Theorem | cmbr3 31627 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵))) | ||
| Theorem | cm0 31628 | The zero Hilbert lattice element commutes with every element. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → 0ℋ 𝐶ℋ 𝐴) | ||
| Theorem | cmidi 31629 | The commutes relation is reflexive. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝐶ℋ 𝐴 | ||
| Theorem | pjoml2 31630 | Variation of orthomodular law. Definition in [Kalmbach] p. 22. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = 𝐵) | ||
| Theorem | pjoml3 31631 | Variation of orthomodular law. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⊆ 𝐴 → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = 𝐵)) | ||
| Theorem | pjoml5 31632 | The orthomodular law. Remark in [Kalmbach] p. 22. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ ((⊥‘𝐴) ∩ (𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | cmcm 31633 | Commutation is symmetric. Theorem 2(v) of [Kalmbach] p. 22. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴)) | ||
| Theorem | cmcm3 31634 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ (⊥‘𝐴) 𝐶ℋ 𝐵)) | ||
| Theorem | cmcm2 31635 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ (⊥‘𝐵))) | ||
| Theorem | lecm 31636 | Comparable Hilbert lattice elements commute. Theorem 2.3(iii) of [Beran] p. 40. (Contributed by NM, 13-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝐶ℋ 𝐵) | ||
| Theorem | fh1 31637 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝐶ℋ 𝐵 ∧ 𝐴 𝐶ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶))) | ||
| Theorem | fh2 31638 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝐶ℋ 𝐴 ∧ 𝐵 𝐶ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶))) | ||
| Theorem | cm2j 31639 | A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝐶ℋ 𝐵 ∧ 𝐴 𝐶ℋ 𝐶)) → 𝐴 𝐶ℋ (𝐵 ∨ℋ 𝐶)) | ||
| Theorem | fh1i 31640 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐶)) | ||
| Theorem | fh2i 31641 | Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐵 ∩ (𝐴 ∨ℋ 𝐶)) = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ 𝐶)) | ||
| Theorem | fh3i 31642 | Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐴 ∨ℋ (𝐵 ∩ 𝐶)) = ((𝐴 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐶)) | ||
| Theorem | fh4i 31643 | Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ (𝐵 ∨ℋ (𝐴 ∩ 𝐶)) = ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ 𝐶)) | ||
| Theorem | cm2ji 31644 | A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 11-May-2009.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ 𝐴 𝐶ℋ (𝐵 ∨ℋ 𝐶) | ||
| Theorem | cm2mi 31645 | A lattice element that commutes with two others also commutes with their meet. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 11-May-2009.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 𝐶ℋ 𝐵 & ⊢ 𝐴 𝐶ℋ 𝐶 ⇒ ⊢ 𝐴 𝐶ℋ (𝐵 ∩ 𝐶) | ||
| Theorem | qlax1i 31646 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 = (⊥‘(⊥‘𝐴)) | ||
| Theorem | qlax2i 31647 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) | ||
| Theorem | qlax3i 31648 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-3" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ ((𝐴 ∨ℋ 𝐵) ∨ℋ 𝐶) = (𝐴 ∨ℋ (𝐵 ∨ℋ 𝐶)) | ||
| Theorem | qlax4i 31649 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ (𝐵 ∨ℋ (⊥‘𝐵))) = (𝐵 ∨ℋ (⊥‘𝐵)) | ||
| Theorem | qlax5i 31650 | One of the equations showing Cℋ is an ortholattice. (This corresponds to axiom "ax-5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))) = 𝐴 | ||
| Theorem | qlaxr1i 31651 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 = 𝐴 | ||
| Theorem | qlaxr2i 31652 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 = 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 = 𝐶 | ||
| Theorem | qlaxr4i 31653 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (⊥‘𝐴) = (⊥‘𝐵) | ||
| Theorem | qlaxr5i 31654 | One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) | ||
| Theorem | qlaxr3i 31655 | A variation of the orthomodular law, showing Cℋ is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ (𝐶 ∨ℋ (⊥‘𝐶)) = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐵))) ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | chscllem1 31656* | Lemma for chscl 31660. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) | ||
| Theorem | chscllem2 31657* | Lemma for chscl 31660. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑣 ) | ||
| Theorem | chscllem3 31658* | Lemma for chscl 31660. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → (𝐻‘𝑁) = (𝐶 +ℎ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑁)) | ||
| Theorem | chscllem4 31659* | Lemma for chscl 31660. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) & ⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) & ⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐴)‘(𝐻‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((projℎ‘𝐵)‘(𝐻‘𝑛))) ⇒ ⊢ (𝜑 → 𝑢 ∈ (𝐴 +ℋ 𝐵)) | ||
| Theorem | chscl 31660 | The subspace sum of two closed orthogonal spaces is closed. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ∈ Cℋ ) & ⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) ⇒ ⊢ (𝜑 → (𝐴 +ℋ 𝐵) ∈ Cℋ ) | ||
| Theorem | osumi 31661 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. Note that the (countable) Axiom of Choice is used for this proof via pjhth 31412, although "the hard part" of this proof, chscl 31660, requires no choice. (Contributed by NM, 28-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | osumcori 31662 | Corollary of osumi 31661. (Contributed by NM, 5-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) +ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) | ||
| Theorem | osumcor2i 31663 | Corollary of osumi 31661, showing it holds under the weaker hypothesis that 𝐴 and 𝐵 commute. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | osum 31664 | If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. (Contributed by NM, 31-Oct-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | spansnji 31665 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) | ||
| Theorem | spansnj 31666 | The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵}))) | ||
| Theorem | spansnscl 31667 | The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℋ (span‘{𝐵})) ∈ Cℋ ) | ||
| Theorem | sumspansn 31668 | The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ∈ (span‘{𝐴}) ↔ 𝐵 ∈ (span‘{𝐴}))) | ||
| Theorem | spansnm0i 31669 | The meet of different one-dimensional subspaces is the zero subspace. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (¬ 𝐴 ∈ (span‘{𝐵}) → ((span‘{𝐴}) ∩ (span‘{𝐵})) = 0ℋ) | ||
| Theorem | nonbooli 31670 | A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺)) = 0ℋ but (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ 0ℋ. The antecedent specifies that the vectors 𝐴 and 𝐵 are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to 𝐹, 𝐺, and 𝐻. (Contributed by NM, 1-Nov-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐹 = (span‘{𝐴}) & ⊢ 𝐺 = (span‘{𝐵}) & ⊢ 𝐻 = (span‘{(𝐴 +ℎ 𝐵)}) ⇒ ⊢ (¬ (𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹) → (𝐻 ∩ (𝐹 ∨ℋ 𝐺)) ≠ ((𝐻 ∩ 𝐹) ∨ℋ (𝐻 ∩ 𝐺))) | ||
| Theorem | spansncvi 31671 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶}))) | ||
| Theorem | spansncv 31672 | Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ (span‘{𝐶}))) → 𝐵 = (𝐴 ∨ℋ (span‘{𝐶})))) | ||
| Theorem | 5oalem1 31673 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) | ||
| Theorem | 5oalem2 31674 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ ⇒ ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑥 +ℎ 𝑦) = (𝑧 +ℎ 𝑤)) → (𝑥 −ℎ 𝑧) ∈ ((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷))) | ||
| Theorem | 5oalem3 31675 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)))) | ||
| Theorem | 5oalem4 31676 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ (𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺)) ∧ ((𝑥 +ℎ 𝑦) = (𝑓 +ℎ 𝑔) ∧ (𝑧 +ℎ 𝑤) = (𝑓 +ℎ 𝑔))) → (𝑥 −ℎ 𝑧) ∈ (((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) +ℋ ((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺))))) | ||
| Theorem | 5oalem5 31677 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) ∧ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ (𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆))) ∧ (((𝑥 +ℎ 𝑦) = (𝑣 +ℎ 𝑢) ∧ (𝑧 +ℎ 𝑤) = (𝑣 +ℎ 𝑢)) ∧ (𝑓 +ℎ 𝑔) = (𝑣 +ℎ 𝑢))) → (𝑥 −ℎ 𝑧) ∈ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))) | ||
| Theorem | 5oalem6 31678 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ℎ = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) ∧ ℎ = (𝑧 +ℎ 𝑤))) ∧ (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐺) ∧ ℎ = (𝑓 +ℎ 𝑔)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆) ∧ ℎ = (𝑣 +ℎ 𝑢)))) → ℎ ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))))))))) | ||
| Theorem | 5oalem7 31679 | Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) TODO: replace uses of ee4anv 2353 with 4exdistrv 1956 as in 3oalem3 31683. (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝐶 ∈ Sℋ & ⊢ 𝐷 ∈ Sℋ & ⊢ 𝐹 ∈ Sℋ & ⊢ 𝐺 ∈ Sℋ & ⊢ 𝑅 ∈ Sℋ & ⊢ 𝑆 ∈ Sℋ ⇒ ⊢ (((𝐴 +ℋ 𝐵) ∩ (𝐶 +ℋ 𝐷)) ∩ ((𝐹 +ℋ 𝐺) ∩ (𝑅 +ℋ 𝑆))) ⊆ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ ((((𝐴 +ℋ 𝐶) ∩ (𝐵 +ℋ 𝐷)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)))) ∩ ((((𝐴 +ℋ 𝐹) ∩ (𝐵 +ℋ 𝐺)) ∩ (((𝐴 +ℋ 𝑅) ∩ (𝐵 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆)))) +ℋ (((𝐶 +ℋ 𝐹) ∩ (𝐷 +ℋ 𝐺)) ∩ (((𝐶 +ℋ 𝑅) ∩ (𝐷 +ℋ 𝑆)) +ℋ ((𝐹 +ℋ 𝑅) ∩ (𝐺 +ℋ 𝑆))))))))) | ||
| Theorem | 5oai 31680 | Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝐹 ∈ Cℋ & ⊢ 𝐺 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ & ⊢ 𝐴 ⊆ (⊥‘𝐵) & ⊢ 𝐶 ⊆ (⊥‘𝐷) & ⊢ 𝐹 ⊆ (⊥‘𝐺) & ⊢ 𝑅 ⊆ (⊥‘𝑆) ⇒ ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (𝐶 ∨ℋ 𝐷)) ∩ ((𝐹 ∨ℋ 𝐺) ∩ (𝑅 ∨ℋ 𝑆))) ⊆ (𝐵 ∨ℋ (𝐴 ∩ (𝐶 ∨ℋ ((((𝐴 ∨ℋ 𝐶) ∩ (𝐵 ∨ℋ 𝐷)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)))) ∩ ((((𝐴 ∨ℋ 𝐹) ∩ (𝐵 ∨ℋ 𝐺)) ∩ (((𝐴 ∨ℋ 𝑅) ∩ (𝐵 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆)))) ∨ℋ (((𝐶 ∨ℋ 𝐹) ∩ (𝐷 ∨ℋ 𝐺)) ∩ (((𝐶 ∨ℋ 𝑅) ∩ (𝐷 ∨ℋ 𝑆)) ∨ℋ ((𝐹 ∨ℋ 𝑅) ∩ (𝐺 ∨ℋ 𝑆))))))))) | ||
| Theorem | 3oalem1 31681* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) | ||
| Theorem | 3oalem2 31682* | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) | ||
| Theorem | 3oalem3 31683 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ & ⊢ 𝑆 ∈ Cℋ ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) | ||
| Theorem | 3oalem4 31684 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⇒ ⊢ 𝑅 ⊆ (⊥‘𝐵) | ||
| Theorem | 3oalem5 31685 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) = ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) | ||
| Theorem | 3oalem6 31686 | Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
| Theorem | 3oai 31687 | 3OA (weak) orthoarguesian law. Equation IV of [GodowskiGreechie] p. 249. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) & ⊢ 𝑆 = ((⊥‘𝐶) ∩ (𝐶 ∨ℋ 𝐴)) ⇒ ⊢ ((𝐵 ∨ℋ 𝑅) ∩ (𝐶 ∨ℋ 𝑆)) ⊆ (𝐵 ∨ℋ (𝑅 ∩ (𝑆 ∨ℋ ((𝐵 ∨ℋ 𝐶) ∩ (𝑅 ∨ℋ 𝑆))))) | ||
| Theorem | pjorthi 31688 | Projection components on orthocomplemented subspaces are orthogonal. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐻 ∈ Cℋ → (((projℎ‘𝐻)‘𝐴) ·ih ((projℎ‘(⊥‘𝐻))‘𝐵)) = 0) | ||
| Theorem | pjch1 31689 | Property of identity projection. Remark in [Beran] p. 111. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → ((projℎ‘ ℋ)‘𝐴) = 𝐴) | ||
| Theorem | pjo 31690 | The orthogonal projection. Lemma 4.4(i) of [Beran] p. 111. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘(⊥‘𝐻))‘𝐴) = (((projℎ‘ ℋ)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴))) | ||
| Theorem | pjcompi 31691 | Component of a projection. (Contributed by NM, 31-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ (⊥‘𝐻)) → ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = 𝐴) | ||
| Theorem | pjidmi 31692 | A projection is idempotent. Property (ii) of [Beran] p. 109. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘((projℎ‘𝐻)‘𝐴)) = ((projℎ‘𝐻)‘𝐴) | ||
| Theorem | pjadjii 31693 | A projection is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (((projℎ‘𝐻)‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((projℎ‘𝐻)‘𝐵)) | ||
| Theorem | pjaddii 31694 | Projection of vector sum is sum of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐴 +ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐵)) | ||
| Theorem | pjinormii 31695 | The inner product of a projection and its argument is the square of the norm of the projection. Remark in [Halmos] p. 44. (Contributed by NM, 13-Aug-2000.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (((projℎ‘𝐻)‘𝐴) ·ih 𝐴) = ((normℎ‘((projℎ‘𝐻)‘𝐴))↑2) | ||
| Theorem | pjmulii 31696 | Projection of (scalar) product is product of projection. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐶 ·ℎ 𝐴)) = (𝐶 ·ℎ ((projℎ‘𝐻)‘𝐴)) | ||
| Theorem | pjsubii 31697 | Projection of vector difference is difference of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((projℎ‘𝐻)‘(𝐴 −ℎ 𝐵)) = (((projℎ‘𝐻)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐵)) | ||
| Theorem | pjsslem 31698 | Lemma for subset relationships of projections. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ ((projℎ‘(⊥‘𝐺))‘𝐴)) = (((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) | ||
| Theorem | pjss2i 31699 | Subset relationship for projections. Theorem 4.5(i)->(ii) of [Beran] p. 112. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ 𝐺 → ((projℎ‘𝐻)‘((projℎ‘𝐺)‘𝐴)) = ((projℎ‘𝐻)‘𝐴)) | ||
| Theorem | pjssmii 31700 | Projection meet property. Remark in [Kalmbach] p. 66. Also Theorem 4.5(i)->(iv) of [Beran] p. 112. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐺 ∈ Cℋ ⇒ ⊢ (𝐻 ⊆ 𝐺 → (((projℎ‘𝐺)‘𝐴) −ℎ ((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |