![]() |
Metamath
Proof Explorer Theorem List (p. 317 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28330) |
![]() (28331-29855) |
![]() (29856-43447) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bnj1030 31601* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) & ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) & ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) & ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) & ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) & ⊢ 𝐷 = (ω ∖ {∅}) & ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} & ⊢ (𝜂 ↔ ((𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ 𝐵)) & ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) & ⊢ (𝜑′ ↔ [𝑗 / 𝑖]𝜑) & ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) & ⊢ (𝜒′ ↔ [𝑗 / 𝑖]𝜒) & ⊢ (𝜃′ ↔ [𝑗 / 𝑖]𝜃) & ⊢ (𝜏′ ↔ [𝑗 / 𝑖]𝜏) & ⊢ (𝜁′ ↔ [𝑗 / 𝑖]𝜁) & ⊢ (𝜂′ ↔ [𝑗 / 𝑖]𝜂) & ⊢ (𝜎 ↔ ((𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖) → 𝜂′)) & ⊢ (𝜑0 ↔ (𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓)) ⇒ ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) | ||
Theorem | bnj1124 31602 | Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) & ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) ⇒ ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) | ||
Theorem | bnj1133 31603* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) & ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) & ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) ⇒ ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) | ||
Theorem | bnj1128 31604* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) & ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) & ⊢ 𝐷 = (ω ∖ {∅}) & ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} & ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜃 ↔ (𝜒 → (𝑓‘𝑖) ⊆ 𝐴)) & ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) & ⊢ (𝜑′ ↔ [𝑗 / 𝑖]𝜑) & ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) & ⊢ (𝜒′ ↔ [𝑗 / 𝑖]𝜒) & ⊢ (𝜃′ ↔ [𝑗 / 𝑖]𝜃) ⇒ ⊢ (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌 ∈ 𝐴) | ||
Theorem | bnj1127 31605 | Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌 ∈ 𝐴) | ||
Theorem | bnj1125 31606 | Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | ||
Theorem | bnj1145 31607* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) & ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) & ⊢ 𝐷 = (ω ∖ {∅}) & ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} & ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜃 ↔ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝜒) ∧ (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗))) ⇒ ⊢ trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 | ||
Theorem | bnj1147 31608 | Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴 | ||
Theorem | bnj1137 31609* | Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → TrFo(𝐵, 𝐴, 𝑅)) | ||
Theorem | bnj1148 31610 | Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V) | ||
Theorem | bnj1136 31611* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) & ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) & ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵) | ||
Theorem | bnj1152 31612 | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋)) | ||
Theorem | bnj1154 31613* | Property of Fr. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
Theorem | bnj1171 31614 | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) & ⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ⇒ ⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐵 → ¬ 𝑤𝑅𝑧))) | ||
Theorem | bnj1172 31615 | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) & ⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → (𝜃 ↔ 𝑤 ∈ 𝐴)) ⇒ ⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) | ||
Theorem | bnj1173 31616 | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) & ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → (𝜃 ↔ 𝑤 ∈ 𝐴)) | ||
Theorem | bnj1174 31617 | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) & ⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) & ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) ⇒ ⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) | ||
Theorem | bnj1175 31618 | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) & ⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑤 ∈ 𝐴 ∧ 𝑤𝑅𝑧))) & ⊢ (𝜃 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑤 ∈ 𝐴)) ⇒ ⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) | ||
Theorem | bnj1176 31619* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) & ⊢ ((𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V) → ∃𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐶 ¬ 𝑤𝑅𝑧) ⇒ ⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) | ||
Theorem | bnj1177 31620 | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 ↔ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑋)) & ⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 FrSe 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) | ||
Theorem | bnj1186 31621* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐵 → ¬ 𝑤𝑅𝑧))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) | ||
Theorem | bnj1190 31622* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) & ⊢ (𝜓 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∃𝑤 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑤) | ||
Theorem | bnj1189 31623* | Technical lemma for bnj69 31624. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) & ⊢ (𝜓 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) & ⊢ (𝜒 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
Theorem | bnj69 31624* | Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
Theorem | bnj1228 31625* | Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
Theorem | bnj1204 31626* | Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | bnj1234 31627* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐷 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} ⇒ ⊢ 𝐶 = 𝐷 | ||
Theorem | bnj1245 31628* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) & ⊢ 𝑍 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐾 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑍))} ⇒ ⊢ (𝜑 → dom ℎ ⊆ 𝐴) | ||
Theorem | bnj1256 31629* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) | ||
Theorem | bnj1259 31630* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) | ||
Theorem | bnj1253 31631* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → 𝐸 ≠ ∅) | ||
Theorem | bnj1279 31632* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) ⇒ ⊢ ((𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅) | ||
Theorem | bnj1286 31633* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) ⇒ ⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷) | ||
Theorem | bnj1280 31634* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜓 → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅) ⇒ ⊢ (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅))) | ||
Theorem | bnj1296 31635* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) & ⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅))) & ⊢ 𝑍 = 〈𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐾 = {𝑔 ∣ ∃𝑑 ∈ 𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑔‘𝑥) = (𝐺‘𝑍))} & ⊢ 𝑊 = 〈𝑥, (ℎ ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐿 = {ℎ ∣ ∃𝑑 ∈ 𝐵 (ℎ Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (ℎ‘𝑥) = (𝐺‘𝑊))} ⇒ ⊢ (𝜓 → (𝑔‘𝑥) = (ℎ‘𝑥)) | ||
Theorem | bnj1309 31636* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} ⇒ ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) | ||
Theorem | bnj1307 31637* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) ⇒ ⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) | ||
Theorem | bnj1311 31638* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ 𝐷) = (ℎ ↾ 𝐷)) | ||
Theorem | bnj1318 31639 | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑋 = 𝑌 → trCl(𝑋, 𝐴, 𝑅) = trCl(𝑌, 𝐴, 𝑅)) | ||
Theorem | bnj1326 31640* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ 𝐷) = (ℎ ↾ 𝐷)) | ||
Theorem | bnj1321 31641* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏) | ||
Theorem | bnj1364 31642 | Property of FrSe. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑅 FrSe 𝐴 → 𝑅 Se 𝐴) | ||
Theorem | bnj1371 31643* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) ⇒ ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) | ||
Theorem | bnj1373 31644* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) ⇒ ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | ||
Theorem | bnj1374 31645* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} ⇒ ⊢ (𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) | ||
Theorem | bnj1384 31646* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 ⇒ ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) | ||
Theorem | bnj1388 31647* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) ⇒ ⊢ (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′) | ||
Theorem | bnj1398 31648* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) & ⊢ (𝜂 ↔ (𝜃 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) ⇒ ⊢ (𝜒 → ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃) | ||
Theorem | bnj1413 31649* | Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ∈ V) | ||
Theorem | bnj1408 31650* | Technical lemma for bnj1414 31651. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) & ⊢ 𝐶 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) & ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) & ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵) | ||
Theorem | bnj1414 31651* | Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵) | ||
Theorem | bnj1415 31652* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 ⇒ ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | ||
Theorem | bnj1416 31653 | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) ⇒ ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | ||
Theorem | bnj1418 31654 | Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥) | ||
Theorem | bnj1417 31655* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝑅 FrSe 𝐴) & ⊢ (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜓)) & ⊢ (𝜃 ↔ (𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒)) & ⊢ 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | ||
Theorem | bnj1421 31656* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ (𝜒 → Fun 𝑃) & ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) ⇒ ⊢ (𝜒 → Fun 𝑄) | ||
Theorem | bnj1444 31657* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) & ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) & ⊢ (𝜁 ↔ (𝜃 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜌 ↔ (𝜁 ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) ⇒ ⊢ (𝜌 → ∀𝑦𝜌) | ||
Theorem | bnj1445 31658* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) & ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) & ⊢ (𝜁 ↔ (𝜃 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜌 ↔ (𝜁 ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) & ⊢ (𝜎 ↔ (𝜌 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) & ⊢ (𝜑 ↔ (𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) & ⊢ 𝑋 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 ⇒ ⊢ (𝜎 → ∀𝑑𝜎) | ||
Theorem | bnj1446 31659* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 ⇒ ⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑑(𝑄‘𝑧) = (𝐺‘𝑊)) | ||
Theorem | bnj1447 31660* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 ⇒ ⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑦(𝑄‘𝑧) = (𝐺‘𝑊)) | ||
Theorem | bnj1448 31661* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 ⇒ ⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) | ||
Theorem | bnj1449 31662* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) & ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) & ⊢ (𝜁 ↔ (𝜃 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) ⇒ ⊢ (𝜁 → ∀𝑓𝜁) | ||
Theorem | bnj1442 31663* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) & ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) ⇒ ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) | ||
Theorem | bnj1450 31664* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) & ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) & ⊢ (𝜁 ↔ (𝜃 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) & ⊢ (𝜌 ↔ (𝜁 ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) & ⊢ (𝜎 ↔ (𝜌 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) & ⊢ (𝜑 ↔ (𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) & ⊢ 𝑋 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 ⇒ ⊢ (𝜁 → (𝑄‘𝑧) = (𝐺‘𝑊)) | ||
Theorem | bnj1423 31665* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ⇒ ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) | ||
Theorem | bnj1452 31666* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ⇒ ⊢ (𝜒 → 𝐸 ∈ 𝐵) | ||
Theorem | bnj1466 31667* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) ⇒ ⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) | ||
Theorem | bnj1467 31668* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) ⇒ ⊢ (𝑤 ∈ 𝑄 → ∀𝑑 𝑤 ∈ 𝑄) | ||
Theorem | bnj1463 31669* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) & ⊢ (𝜒 → 𝑄 ∈ V) & ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) & ⊢ (𝜒 → 𝑄 Fn 𝐸) & ⊢ (𝜒 → 𝐸 ∈ 𝐵) ⇒ ⊢ (𝜒 → 𝑄 ∈ 𝐶) | ||
Theorem | bnj1489 31670* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) ⇒ ⊢ (𝜒 → 𝑄 ∈ V) | ||
Theorem | bnj1491 31671* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ (𝜒 → (𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ⇒ ⊢ ((𝜒 ∧ 𝑄 ∈ V) → ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | ||
Theorem | bnj1312 31672* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e., a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} & ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) & ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) & ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} & ⊢ 𝑃 = ∪ 𝐻 & ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) & ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 & ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ⇒ ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑓 ∈ 𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | ||
Theorem | bnj1493 31673* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} ⇒ ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑓 ∈ 𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | ||
Theorem | bnj1497 31674* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} ⇒ ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 | ||
Theorem | bnj1498 31675* | Technical lemma for bnj60 31676. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 ⇒ ⊢ (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴) | ||
Theorem | bnj60 31676* | Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 ⇒ ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) | ||
Theorem | bnj1514 31677* | Technical lemma for bnj1500 31682. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} ⇒ ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) | ||
Theorem | bnj1518 31678* | Technical lemma for bnj1500 31682. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) ⇒ ⊢ (𝜓 → ∀𝑑𝜓) | ||
Theorem | bnj1519 31679* | Technical lemma for bnj1500 31682. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 ⇒ ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑑(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | ||
Theorem | bnj1520 31680* | Technical lemma for bnj1500 31682. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 ⇒ ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | ||
Theorem | bnj1501 31681* | Technical lemma for bnj1500 31682. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑)) ⇒ ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | ||
Theorem | bnj1500 31682* | Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 ⇒ ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | ||
Theorem | bnj1525 31683* | Technical lemma for bnj1522 31686. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝐹 ≠ 𝐻)) ⇒ ⊢ (𝜓 → ∀𝑥𝜓) | ||
Theorem | bnj1529 31684* | Technical lemma for bnj1522 31686. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) & ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) ⇒ ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) | ||
Theorem | bnj1523 31685* | Technical lemma for bnj1522 31686. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 & ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉))) & ⊢ (𝜓 ↔ (𝜑 ∧ 𝐹 ≠ 𝐻)) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ (𝐻‘𝑥))) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑦 ∈ 𝐷 ∧ ∀𝑧 ∈ 𝐷 ¬ 𝑧𝑅𝑦)) ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉)) → 𝐹 = 𝐻) | ||
Theorem | bnj1522 31686* | Well-founded recursion, part 3 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} & ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 & ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} & ⊢ 𝐹 = ∪ 𝐶 ⇒ ⊢ ((𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉)) → 𝐹 = 𝐻) | ||
Axiom | ax-7d 31687* | Distinct variable version of ax-11 2209. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Axiom | ax-8d 31688* | Distinct variable version of ax-7 2114. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Axiom | ax-9d1 31689 | Distinct variable version of ax-6 2077, equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 | ||
Axiom | ax-9d2 31690* | Distinct variable version of ax-6 2077, distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
Axiom | ax-10d 31691* | Distinct variable version of axc11n 2447. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Axiom | ax-11d 31692* | Distinct variable version of ax-12 2222. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | quartfull 31693 | The quartic equation, written out in full. This actually makes a fairly good Metamath stress test. Note that the length of this formula could be shortened significantly if the intermediate expressions were expanded and simplified, but it's not like this theorem will be used anyway. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)) ≠ 0) & ⊢ (𝜑 → -((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3) ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)))))) ∨ (𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))))))) | ||
Theorem | deranglem 31694* | Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | ||
Theorem | derangval 31695* | Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) | ||
Theorem | derangf 31696* | The derangement number is a function from finite sets to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ 𝐷:Fin⟶ℕ0 | ||
Theorem | derang0 31697* | The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐷‘∅) = 1 | ||
Theorem | derangsn 31698* | The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) | ||
Theorem | derangenlem 31699* | One half of derangen 31700. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) ≤ (𝐷‘𝐵)) | ||
Theorem | derangen 31700* | The derangement number is a cardinal invariant, i.e. it only depends on the size of a set and not on its contents. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) = (𝐷‘𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |