Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefs Structured version   Visualization version   GIF version

Definition df-cnvrefs 37390
Description: Define the class of all converse reflexive sets, see the comment of df-ssr 37363. It is used only by df-cnvrefrels 37391. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
df-cnvrefs CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}

Detailed syntax breakdown of Definition df-cnvrefs
StepHypRef Expression
1 ccnvrefs 37045 . 2 class CnvRefs
2 cid 5573 . . . . 5 class I
3 vx . . . . . . . 8 setvar 𝑥
43cv 1540 . . . . . . 7 class 𝑥
54cdm 5676 . . . . . 6 class dom 𝑥
64crn 5677 . . . . . 6 class ran 𝑥
75, 6cxp 5674 . . . . 5 class (dom 𝑥 × ran 𝑥)
82, 7cin 3947 . . . 4 class ( I ∩ (dom 𝑥 × ran 𝑥))
94, 7cin 3947 . . . 4 class (𝑥 ∩ (dom 𝑥 × ran 𝑥))
10 cssr 37041 . . . . 5 class S
1110ccnv 5675 . . . 4 class S
128, 9, 11wbr 5148 . . 3 wff ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))
1312, 3cab 2709 . 2 class {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
141, 13wceq 1541 1 wff CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrels2  37393  dfcnvrefrels3  37394
  Copyright terms: Public domain W3C validator