Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefs Structured version   Visualization version   GIF version

Definition df-cnvrefs 35942
 Description: Define the class of all converse reflexive sets, see the comment of df-ssr 35917. It is used only by df-cnvrefrels 35943. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
df-cnvrefs CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}

Detailed syntax breakdown of Definition df-cnvrefs
StepHypRef Expression
1 ccnvrefs 35639 . 2 class CnvRefs
2 cid 5425 . . . . 5 class I
3 vx . . . . . . . 8 setvar 𝑥
43cv 1537 . . . . . . 7 class 𝑥
54cdm 5520 . . . . . 6 class dom 𝑥
64crn 5521 . . . . . 6 class ran 𝑥
75, 6cxp 5518 . . . . 5 class (dom 𝑥 × ran 𝑥)
82, 7cin 3880 . . . 4 class ( I ∩ (dom 𝑥 × ran 𝑥))
94, 7cin 3880 . . . 4 class (𝑥 ∩ (dom 𝑥 × ran 𝑥))
10 cssr 35635 . . . . 5 class S
1110ccnv 5519 . . . 4 class S
128, 9, 11wbr 5031 . . 3 wff ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))
1312, 3cab 2776 . 2 class {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
141, 13wceq 1538 1 wff CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
 Colors of variables: wff setvar class This definition is referenced by:  dfcnvrefrels2  35945  dfcnvrefrels3  35946
 Copyright terms: Public domain W3C validator