Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrels3 Structured version   Visualization version   GIF version

Theorem dfcnvrefrels3 38513
Description: Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
dfcnvrefrels3 CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦)}
Distinct variable group:   𝑥,𝑟,𝑦

Proof of Theorem dfcnvrefrels3
StepHypRef Expression
1 df-cnvrefrels 38510 . . 3 CnvRefRels = ( CnvRefs ∩ Rels )
2 df-cnvrefs 38509 . . 3 CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
31, 2abeqin 38234 . 2 CnvRefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
4 dmexg 7857 . . . . . 6 (𝑟 ∈ V → dom 𝑟 ∈ V)
54elv 3449 . . . . 5 dom 𝑟 ∈ V
6 rnexg 7858 . . . . . 6 (𝑟 ∈ V → ran 𝑟 ∈ V)
76elv 3449 . . . . 5 ran 𝑟 ∈ V
85, 7xpex 7709 . . . 4 (dom 𝑟 × ran 𝑟) ∈ V
9 inex2g 5270 . . . 4 ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
10 brcnvssr 38490 . . . 4 (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
118, 9, 10mp2b 10 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))
12 inxpssidinxp 38297 . . 3 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦))
1311, 12bitri 275 . 2 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦))
143, 13rabbieq 3411 1 CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  cin 3910  wss 3911   class class class wbr 5102   I cid 5525   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632   Rels crels 38164   S cssr 38165   CnvRefs ccnvrefs 38169   CnvRefRels ccnvrefrels 38170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-ssr 38482  df-cnvrefs 38509  df-cnvrefrels 38510
This theorem is referenced by:  elcnvrefrels3  38519
  Copyright terms: Public domain W3C validator