![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrels3 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.) |
Ref | Expression |
---|---|
dfcnvrefrels3 | ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrels 37396 | . . 3 ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
2 | df-cnvrefs 37395 | . . 3 ⊢ CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | 1, 2 | abeqin 37120 | . 2 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} |
4 | dmexg 7894 | . . . . . 6 ⊢ (𝑟 ∈ V → dom 𝑟 ∈ V) | |
5 | 4 | elv 3481 | . . . . 5 ⊢ dom 𝑟 ∈ V |
6 | rnexg 7895 | . . . . . 6 ⊢ (𝑟 ∈ V → ran 𝑟 ∈ V) | |
7 | 6 | elv 3481 | . . . . 5 ⊢ ran 𝑟 ∈ V |
8 | 5, 7 | xpex 7740 | . . . 4 ⊢ (dom 𝑟 × ran 𝑟) ∈ V |
9 | inex2g 5321 | . . . 4 ⊢ ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
10 | brcnvssr 37376 | . . . 4 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) | |
11 | 8, 9, 10 | mp2b 10 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))) |
12 | inxpssidinxp 37185 | . . 3 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)) | |
13 | 11, 12 | bitri 275 | . 2 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)) |
14 | 3, 13 | rabbieq 37118 | 1 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 Vcvv 3475 ∩ cin 3948 ⊆ wss 3949 class class class wbr 5149 I cid 5574 × cxp 5675 ◡ccnv 5676 dom cdm 5677 ran crn 5678 Rels crels 37045 S cssr 37046 CnvRefs ccnvrefs 37050 CnvRefRels ccnvrefrels 37051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-ssr 37368 df-cnvrefs 37395 df-cnvrefrels 37396 |
This theorem is referenced by: elcnvrefrels3 37405 |
Copyright terms: Public domain | W3C validator |