Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrels3 Structured version   Visualization version   GIF version

Theorem dfcnvrefrels3 35927
Description: Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
dfcnvrefrels3 CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦)}
Distinct variable group:   𝑥,𝑟,𝑦

Proof of Theorem dfcnvrefrels3
StepHypRef Expression
1 df-cnvrefrels 35924 . . 3 CnvRefRels = ( CnvRefs ∩ Rels )
2 df-cnvrefs 35923 . . 3 CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
31, 2abeqin 35674 . 2 CnvRefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
4 dmexg 7594 . . . . . 6 (𝑟 ∈ V → dom 𝑟 ∈ V)
54elv 3446 . . . . 5 dom 𝑟 ∈ V
6 rnexg 7595 . . . . . 6 (𝑟 ∈ V → ran 𝑟 ∈ V)
76elv 3446 . . . . 5 ran 𝑟 ∈ V
85, 7xpex 7456 . . . 4 (dom 𝑟 × ran 𝑟) ∈ V
9 inex2g 5188 . . . 4 ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
10 brcnvssr 35906 . . . 4 (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
118, 9, 10mp2b 10 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))
12 inxpssidinxp 35733 . . 3 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦))
1311, 12bitri 278 . 2 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦))
143, 13rabbieq 35672 1 CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  cin 3880  wss 3881   class class class wbr 5030   I cid 5424   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520   Rels crels 35615   S cssr 35616   CnvRefs ccnvrefs 35620   CnvRefRels ccnvrefrels 35621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-ssr 35898  df-cnvrefs 35923  df-cnvrefrels 35924
This theorem is referenced by:  elcnvrefrels3  35931
  Copyright terms: Public domain W3C validator