| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrels3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfcnvrefrels3 | ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrels 38617 | . . 3 ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
| 2 | df-cnvrefs 38616 | . . 3 ⊢ CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
| 3 | 1, 2 | abeqin 38288 | . 2 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} |
| 4 | dmexg 7831 | . . . . . 6 ⊢ (𝑟 ∈ V → dom 𝑟 ∈ V) | |
| 5 | 4 | elv 3441 | . . . . 5 ⊢ dom 𝑟 ∈ V |
| 6 | rnexg 7832 | . . . . . 6 ⊢ (𝑟 ∈ V → ran 𝑟 ∈ V) | |
| 7 | 6 | elv 3441 | . . . . 5 ⊢ ran 𝑟 ∈ V |
| 8 | 5, 7 | xpex 7686 | . . . 4 ⊢ (dom 𝑟 × ran 𝑟) ∈ V |
| 9 | inex2g 5256 | . . . 4 ⊢ ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
| 10 | brcnvssr 38597 | . . . 4 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) | |
| 11 | 8, 9, 10 | mp2b 10 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))) |
| 12 | inxpssidinxp 38353 | . . 3 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)) | |
| 13 | 11, 12 | bitri 275 | . 2 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)) |
| 14 | 3, 13 | rabbieq 3403 | 1 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5089 I cid 5508 × cxp 5612 ◡ccnv 5613 dom cdm 5614 ran crn 5615 Rels crels 38223 S cssr 38224 CnvRefs ccnvrefs 38228 CnvRefRels ccnvrefrels 38229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-ssr 38589 df-cnvrefs 38616 df-cnvrefrels 38617 |
| This theorem is referenced by: elcnvrefrels3 38626 |
| Copyright terms: Public domain | W3C validator |