Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefrels Structured version   Visualization version   GIF version

Definition df-cnvrefrels 36621
Description: Define the class of converse reflexive relations. This is practically dfcnvrefrels2 36623 (which uses the traditional subclass relation ) : we use converse subset relation (brcnvssr 36603) here to ensure the comparability to the definitions of the classes of all reflexive (df-ref 22637), symmetric (df-syms 36635) and transitive (df-trs 36665) sets.

We use this concept to define functions (df-funsALTV 36771, df-funALTV 36772) and disjoints (df-disjs 36794, df-disjALTV 36795).

For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 36629. Alternate definitions are dfcnvrefrels2 36623 and dfcnvrefrels3 36624. (Contributed by Peter Mazsa, 7-Jul-2019.)

Assertion
Ref Expression
df-cnvrefrels CnvRefRels = ( CnvRefs ∩ Rels )

Detailed syntax breakdown of Definition df-cnvrefrels
StepHypRef Expression
1 ccnvrefrels 36320 . 2 class CnvRefRels
2 ccnvrefs 36319 . . 3 class CnvRefs
3 crels 36314 . . 3 class Rels
42, 3cin 3890 . 2 class ( CnvRefs ∩ Rels )
51, 4wceq 1541 1 wff CnvRefRels = ( CnvRefs ∩ Rels )
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrels2  36623  dfcnvrefrels3  36624
  Copyright terms: Public domain W3C validator