Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefrels Structured version   Visualization version   GIF version

Definition df-cnvrefrels 37935
Description: Define the class of converse reflexive relations. This is practically dfcnvrefrels2 37937 (which uses the traditional subclass relation ) : we use converse subset relation (brcnvssr 37915) here to ensure the comparability to the definitions of the classes of all reflexive (df-ref 23396), symmetric (df-syms 37951) and transitive (df-trs 37981) sets.

We use this concept to define functions (df-funsALTV 38090, df-funALTV 38091) and disjoints (df-disjs 38113, df-disjALTV 38114).

For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 37945. Alternate definitions are dfcnvrefrels2 37937 and dfcnvrefrels3 37938. (Contributed by Peter Mazsa, 7-Jul-2019.)

Assertion
Ref Expression
df-cnvrefrels CnvRefRels = ( CnvRefs ∩ Rels )

Detailed syntax breakdown of Definition df-cnvrefrels
StepHypRef Expression
1 ccnvrefrels 37591 . 2 class CnvRefRels
2 ccnvrefs 37590 . . 3 class CnvRefs
3 crels 37585 . . 3 class Rels
42, 3cin 3943 . 2 class ( CnvRefs ∩ Rels )
51, 4wceq 1534 1 wff CnvRefRels = ( CnvRefs ∩ Rels )
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrels2  37937  dfcnvrefrels3  37938
  Copyright terms: Public domain W3C validator