Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefrels Structured version   Visualization version   GIF version

Definition df-cnvrefrels 37391
Description: Define the class of converse reflexive relations. This is practically dfcnvrefrels2 37393 (which uses the traditional subclass relation ) : we use converse subset relation (brcnvssr 37371) here to ensure the comparability to the definitions of the classes of all reflexive (df-ref 23008), symmetric (df-syms 37407) and transitive (df-trs 37437) sets.

We use this concept to define functions (df-funsALTV 37546, df-funALTV 37547) and disjoints (df-disjs 37569, df-disjALTV 37570).

For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 37401. Alternate definitions are dfcnvrefrels2 37393 and dfcnvrefrels3 37394. (Contributed by Peter Mazsa, 7-Jul-2019.)

Assertion
Ref Expression
df-cnvrefrels CnvRefRels = ( CnvRefs ∩ Rels )

Detailed syntax breakdown of Definition df-cnvrefrels
StepHypRef Expression
1 ccnvrefrels 37046 . 2 class CnvRefRels
2 ccnvrefs 37045 . . 3 class CnvRefs
3 crels 37040 . . 3 class Rels
42, 3cin 3947 . 2 class ( CnvRefs ∩ Rels )
51, 4wceq 1541 1 wff CnvRefRels = ( CnvRefs ∩ Rels )
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrels2  37393  dfcnvrefrels3  37394
  Copyright terms: Public domain W3C validator