Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefrels Structured version   Visualization version   GIF version

Definition df-cnvrefrels 38617
Description: Define the class of converse reflexive relations. This is practically dfcnvrefrels2 38619 (which uses the traditional subclass relation ) : we use converse subset relation (brcnvssr 38597) here to ensure the comparability to the definitions of the classes of all reflexive (df-ref 23420), symmetric (df-syms 38633) and transitive (df-trs 38667) sets.

We use this concept to define functions (df-funsALTV 38778, df-funALTV 38779) and disjoints (df-disjs 38801, df-disjALTV 38802).

For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 38627. Alternate definitions are dfcnvrefrels2 38619 and dfcnvrefrels3 38620. (Contributed by Peter Mazsa, 7-Jul-2019.)

Assertion
Ref Expression
df-cnvrefrels CnvRefRels = ( CnvRefs ∩ Rels )

Detailed syntax breakdown of Definition df-cnvrefrels
StepHypRef Expression
1 ccnvrefrels 38229 . 2 class CnvRefRels
2 ccnvrefs 38228 . . 3 class CnvRefs
3 crels 38223 . . 3 class Rels
42, 3cin 3896 . 2 class ( CnvRefs ∩ Rels )
51, 4wceq 1541 1 wff CnvRefRels = ( CnvRefs ∩ Rels )
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrels2  38619  dfcnvrefrels3  38620
  Copyright terms: Public domain W3C validator