Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefrels Structured version   Visualization version   GIF version

Definition df-cnvrefrels 38527
Description: Define the class of converse reflexive relations. This is practically dfcnvrefrels2 38529 (which uses the traditional subclass relation ) : we use converse subset relation (brcnvssr 38507) here to ensure the comparability to the definitions of the classes of all reflexive (df-ref 23513), symmetric (df-syms 38543) and transitive (df-trs 38573) sets.

We use this concept to define functions (df-funsALTV 38682, df-funALTV 38683) and disjoints (df-disjs 38705, df-disjALTV 38706).

For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 38537. Alternate definitions are dfcnvrefrels2 38529 and dfcnvrefrels3 38530. (Contributed by Peter Mazsa, 7-Jul-2019.)

Assertion
Ref Expression
df-cnvrefrels CnvRefRels = ( CnvRefs ∩ Rels )

Detailed syntax breakdown of Definition df-cnvrefrels
StepHypRef Expression
1 ccnvrefrels 38190 . 2 class CnvRefRels
2 ccnvrefs 38189 . . 3 class CnvRefs
3 crels 38184 . . 3 class Rels
42, 3cin 3950 . 2 class ( CnvRefs ∩ Rels )
51, 4wceq 1540 1 wff CnvRefRels = ( CnvRefs ∩ Rels )
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrels2  38529  dfcnvrefrels3  38530
  Copyright terms: Public domain W3C validator