Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cnvrefrels Structured version   Visualization version   GIF version

Definition df-cnvrefrels 38507
Description: Define the class of converse reflexive relations. This is practically dfcnvrefrels2 38509 (which uses the traditional subclass relation ) : we use converse subset relation (brcnvssr 38487) here to ensure the comparability to the definitions of the classes of all reflexive (df-ref 23528), symmetric (df-syms 38523) and transitive (df-trs 38553) sets.

We use this concept to define functions (df-funsALTV 38662, df-funALTV 38663) and disjoints (df-disjs 38685, df-disjALTV 38686).

For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 38517. Alternate definitions are dfcnvrefrels2 38509 and dfcnvrefrels3 38510. (Contributed by Peter Mazsa, 7-Jul-2019.)

Assertion
Ref Expression
df-cnvrefrels CnvRefRels = ( CnvRefs ∩ Rels )

Detailed syntax breakdown of Definition df-cnvrefrels
StepHypRef Expression
1 ccnvrefrels 38169 . 2 class CnvRefRels
2 ccnvrefs 38168 . . 3 class CnvRefs
3 crels 38163 . . 3 class Rels
42, 3cin 3961 . 2 class ( CnvRefs ∩ Rels )
51, 4wceq 1536 1 wff CnvRefRels = ( CnvRefs ∩ Rels )
Colors of variables: wff setvar class
This definition is referenced by:  dfcnvrefrels2  38509  dfcnvrefrels3  38510
  Copyright terms: Public domain W3C validator