![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 37378. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
dfcnvrefrels2 | ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrels 37391 | . 2 ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
2 | df-cnvrefs 37390 | . 2 ⊢ CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | dmexg 7893 | . . . . . 6 ⊢ (𝑟 ∈ V → dom 𝑟 ∈ V) | |
4 | 3 | elv 3480 | . . . . 5 ⊢ dom 𝑟 ∈ V |
5 | rnexg 7894 | . . . . . 6 ⊢ (𝑟 ∈ V → ran 𝑟 ∈ V) | |
6 | 5 | elv 3480 | . . . . 5 ⊢ ran 𝑟 ∈ V |
7 | 4, 6 | xpex 7739 | . . . 4 ⊢ (dom 𝑟 × ran 𝑟) ∈ V |
8 | inex2g 5320 | . . . 4 ⊢ ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
9 | brcnvssr 37371 | . . . 4 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) | |
10 | 7, 8, 9 | mp2b 10 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))) |
11 | elrels6 37355 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
12 | 11 | elv 3480 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
13 | 12 | biimpi 215 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
14 | 13 | sseq1d 4013 | . . 3 ⊢ (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
15 | 10, 14 | bitrid 282 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
16 | 1, 2, 15 | abeqinbi 37116 | 1 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 I cid 5573 × cxp 5674 ◡ccnv 5675 dom cdm 5676 ran crn 5677 Rels crels 37040 S cssr 37041 CnvRefs ccnvrefs 37045 CnvRefRels ccnvrefrels 37046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-rels 37350 df-ssr 37363 df-cnvrefs 37390 df-cnvrefrels 37391 |
This theorem is referenced by: elcnvrefrels2 37399 |
Copyright terms: Public domain | W3C validator |