| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrels2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 38477. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| Ref | Expression |
|---|---|
| dfcnvrefrels2 | ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrels 38490 | . 2 ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
| 2 | df-cnvrefs 38489 | . 2 ⊢ CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
| 3 | dmexg 7895 | . . . . . 6 ⊢ (𝑟 ∈ V → dom 𝑟 ∈ V) | |
| 4 | 3 | elv 3464 | . . . . 5 ⊢ dom 𝑟 ∈ V |
| 5 | rnexg 7896 | . . . . . 6 ⊢ (𝑟 ∈ V → ran 𝑟 ∈ V) | |
| 6 | 5 | elv 3464 | . . . . 5 ⊢ ran 𝑟 ∈ V |
| 7 | 4, 6 | xpex 7745 | . . . 4 ⊢ (dom 𝑟 × ran 𝑟) ∈ V |
| 8 | inex2g 5290 | . . . 4 ⊢ ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
| 9 | brcnvssr 38470 | . . . 4 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) | |
| 10 | 7, 8, 9 | mp2b 10 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))) |
| 11 | elrels6 38454 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
| 12 | 11 | elv 3464 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 13 | 12 | biimpi 216 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 14 | 13 | sseq1d 3990 | . . 3 ⊢ (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
| 15 | 10, 14 | bitrid 283 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
| 16 | 1, 2, 15 | abeqinbi 38217 | 1 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 class class class wbr 5119 I cid 5547 × cxp 5652 ◡ccnv 5653 dom cdm 5654 ran crn 5655 Rels crels 38147 S cssr 38148 CnvRefs ccnvrefs 38152 CnvRefRels ccnvrefrels 38153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-rels 38449 df-ssr 38462 df-cnvrefs 38489 df-cnvrefrels 38490 |
| This theorem is referenced by: elcnvrefrels2 38498 |
| Copyright terms: Public domain | W3C validator |