![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of converse reflexive relations. Cf. the comment of dfrefrels2 34886. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
dfcnvrefrels2 | ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrels 34897 | . 2 ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
2 | df-cnvrefs 34896 | . 2 ⊢ CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | dmexg 7375 | . . . . . 6 ⊢ (𝑟 ∈ V → dom 𝑟 ∈ V) | |
4 | 3 | elv 3401 | . . . . 5 ⊢ dom 𝑟 ∈ V |
5 | rnexg 7376 | . . . . . 6 ⊢ (𝑟 ∈ V → ran 𝑟 ∈ V) | |
6 | 5 | elv 3401 | . . . . 5 ⊢ ran 𝑟 ∈ V |
7 | 4, 6 | xpex 7240 | . . . 4 ⊢ (dom 𝑟 × ran 𝑟) ∈ V |
8 | inex2ALTV 34728 | . . . 4 ⊢ ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
9 | brcnvssr 34879 | . . . 4 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) | |
10 | 7, 8, 9 | mp2b 10 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))) |
11 | elrels6 34863 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
12 | 11 | elv 3401 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
13 | 12 | biimpi 208 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
14 | 13 | sseq1d 3850 | . . 3 ⊢ (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
15 | 10, 14 | syl5bb 275 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
16 | 1, 2, 15 | abeqinbi 34648 | 1 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1601 ∈ wcel 2106 {crab 3093 Vcvv 3397 ∩ cin 3790 ⊆ wss 3791 class class class wbr 4886 I cid 5260 × cxp 5353 ◡ccnv 5354 dom cdm 5355 ran crn 5356 Rels crels 34603 S cssr 34604 CnvRefs ccnvrefs 34608 CnvRefRels ccnvrefrels 34609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-xp 5361 df-rel 5362 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-rels 34858 df-ssr 34871 df-cnvrefs 34896 df-cnvrefrels 34897 |
This theorem is referenced by: elcnvrefrels2 34903 |
Copyright terms: Public domain | W3C validator |