Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrels2 Structured version   Visualization version   GIF version

Theorem dfcnvrefrels2 38519
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 38504. (Contributed by Peter Mazsa, 21-Jul-2021.)
Assertion
Ref Expression
dfcnvrefrels2 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}

Proof of Theorem dfcnvrefrels2
StepHypRef Expression
1 df-cnvrefrels 38517 . 2 CnvRefRels = ( CnvRefs ∩ Rels )
2 df-cnvrefs 38516 . 2 CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 dmexg 7877 . . . . . 6 (𝑟 ∈ V → dom 𝑟 ∈ V)
43elv 3452 . . . . 5 dom 𝑟 ∈ V
5 rnexg 7878 . . . . . 6 (𝑟 ∈ V → ran 𝑟 ∈ V)
65elv 3452 . . . . 5 ran 𝑟 ∈ V
74, 6xpex 7729 . . . 4 (dom 𝑟 × ran 𝑟) ∈ V
8 inex2g 5275 . . . 4 ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
9 brcnvssr 38497 . . . 4 (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
107, 8, 9mp2b 10 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))
11 elrels6 38481 . . . . . 6 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
1211elv 3452 . . . . 5 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
1312biimpi 216 . . . 4 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
1413sseq1d 3978 . . 3 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
1510, 14bitrid 283 . 2 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
161, 2, 15abeqinbi 38242 1 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cin 3913  wss 3914   class class class wbr 5107   I cid 5532   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639   Rels crels 38171   S cssr 38172   CnvRefs ccnvrefs 38176   CnvRefRels ccnvrefrels 38177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-rels 38476  df-ssr 38489  df-cnvrefs 38516  df-cnvrefrels 38517
This theorem is referenced by:  elcnvrefrels2  38525
  Copyright terms: Public domain W3C validator