Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrels2 Structured version   Visualization version   GIF version

Theorem dfcnvrefrels2 37393
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 37378. (Contributed by Peter Mazsa, 21-Jul-2021.)
Assertion
Ref Expression
dfcnvrefrels2 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}

Proof of Theorem dfcnvrefrels2
StepHypRef Expression
1 df-cnvrefrels 37391 . 2 CnvRefRels = ( CnvRefs ∩ Rels )
2 df-cnvrefs 37390 . 2 CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 dmexg 7893 . . . . . 6 (𝑟 ∈ V → dom 𝑟 ∈ V)
43elv 3480 . . . . 5 dom 𝑟 ∈ V
5 rnexg 7894 . . . . . 6 (𝑟 ∈ V → ran 𝑟 ∈ V)
65elv 3480 . . . . 5 ran 𝑟 ∈ V
74, 6xpex 7739 . . . 4 (dom 𝑟 × ran 𝑟) ∈ V
8 inex2g 5320 . . . 4 ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
9 brcnvssr 37371 . . . 4 (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
107, 8, 9mp2b 10 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))
11 elrels6 37355 . . . . . 6 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
1211elv 3480 . . . . 5 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
1312biimpi 215 . . . 4 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
1413sseq1d 4013 . . 3 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
1510, 14bitrid 282 . 2 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
161, 2, 15abeqinbi 37116 1 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  cin 3947  wss 3948   class class class wbr 5148   I cid 5573   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677   Rels crels 37040   S cssr 37041   CnvRefs ccnvrefs 37045   CnvRefRels ccnvrefrels 37046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-rels 37350  df-ssr 37363  df-cnvrefs 37390  df-cnvrefrels 37391
This theorem is referenced by:  elcnvrefrels2  37399
  Copyright terms: Public domain W3C validator