Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 36631. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
dfcnvrefrels2 | ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrels 36642 | . 2 ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
2 | df-cnvrefs 36641 | . 2 ⊢ CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | dmexg 7750 | . . . . . 6 ⊢ (𝑟 ∈ V → dom 𝑟 ∈ V) | |
4 | 3 | elv 3438 | . . . . 5 ⊢ dom 𝑟 ∈ V |
5 | rnexg 7751 | . . . . . 6 ⊢ (𝑟 ∈ V → ran 𝑟 ∈ V) | |
6 | 5 | elv 3438 | . . . . 5 ⊢ ran 𝑟 ∈ V |
7 | 4, 6 | xpex 7603 | . . . 4 ⊢ (dom 𝑟 × ran 𝑟) ∈ V |
8 | inex2g 5244 | . . . 4 ⊢ ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
9 | brcnvssr 36624 | . . . 4 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) | |
10 | 7, 8, 9 | mp2b 10 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))) |
11 | elrels6 36608 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
12 | 11 | elv 3438 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
13 | 12 | biimpi 215 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
14 | 13 | sseq1d 3952 | . . 3 ⊢ (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
15 | 10, 14 | syl5bb 283 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
16 | 1, 2, 15 | abeqinbi 36393 | 1 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 I cid 5488 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 Rels crels 36335 S cssr 36336 CnvRefs ccnvrefs 36340 CnvRefRels ccnvrefrels 36341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-rels 36603 df-ssr 36616 df-cnvrefs 36641 df-cnvrefrels 36642 |
This theorem is referenced by: elcnvrefrels2 36648 |
Copyright terms: Public domain | W3C validator |