Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnvrefrels2 Structured version   Visualization version   GIF version

Theorem dfcnvrefrels2 36571
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 36558. (Contributed by Peter Mazsa, 21-Jul-2021.)
Assertion
Ref Expression
dfcnvrefrels2 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}

Proof of Theorem dfcnvrefrels2
StepHypRef Expression
1 df-cnvrefrels 36569 . 2 CnvRefRels = ( CnvRefs ∩ Rels )
2 df-cnvrefs 36568 . 2 CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 dmexg 7724 . . . . . 6 (𝑟 ∈ V → dom 𝑟 ∈ V)
43elv 3428 . . . . 5 dom 𝑟 ∈ V
5 rnexg 7725 . . . . . 6 (𝑟 ∈ V → ran 𝑟 ∈ V)
65elv 3428 . . . . 5 ran 𝑟 ∈ V
74, 6xpex 7581 . . . 4 (dom 𝑟 × ran 𝑟) ∈ V
8 inex2g 5239 . . . 4 ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
9 brcnvssr 36551 . . . 4 (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
107, 8, 9mp2b 10 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))
11 elrels6 36535 . . . . . 6 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
1211elv 3428 . . . . 5 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
1312biimpi 215 . . . 4 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
1413sseq1d 3948 . . 3 (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
1510, 14syl5bb 282 . 2 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))))
161, 2, 15abeqinbi 36320 1 CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070   I cid 5479   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581   Rels crels 36262   S cssr 36263   CnvRefs ccnvrefs 36267   CnvRefRels ccnvrefrels 36268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-rels 36530  df-ssr 36543  df-cnvrefs 36568  df-cnvrefrels 36569
This theorem is referenced by:  elcnvrefrels2  36575
  Copyright terms: Public domain W3C validator