![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelressn | Structured version Visualization version GIF version |
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38398) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.) |
Ref | Expression |
---|---|
refrelressn | ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refressn 38399 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥) | |
2 | relres 6035 | . 2 ⊢ Rel (𝑅 ↾ {𝐴}) | |
3 | dfrefrel5 38473 | . 2 ⊢ ( RefRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥 ∧ Rel (𝑅 ↾ {𝐴}))) | |
4 | 1, 2, 3 | sylanblrc 589 | 1 ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 ∩ cin 3975 {csn 4648 class class class wbr 5166 dom cdm 5700 ran crn 5701 ↾ cres 5702 Rel wrel 5705 RefRel wrefrel 38141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-refrel 38468 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |