Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelressn Structured version   Visualization version   GIF version

Theorem refrelressn 38488
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38406) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
refrelressn (𝐴𝑉 → RefRel (𝑅 ↾ {𝐴}))

Proof of Theorem refrelressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 refressn 38407 . 2 (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
2 relres 5965 . 2 Rel (𝑅 ↾ {𝐴})
3 dfrefrel5 38481 . 2 ( RefRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥 ∧ Rel (𝑅 ↾ {𝐴})))
41, 2, 3sylanblrc 590 1 (𝐴𝑉 → RefRel (𝑅 ↾ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  cin 3910  {csn 4585   class class class wbr 5102  dom cdm 5631  ran crn 5632  cres 5633  Rel wrel 5636   RefRel wrefrel 38148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-refrel 38476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator