| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelressn | Structured version Visualization version GIF version | ||
| Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38406) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.) |
| Ref | Expression |
|---|---|
| refrelressn | ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refressn 38407 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥) | |
| 2 | relres 5965 | . 2 ⊢ Rel (𝑅 ↾ {𝐴}) | |
| 3 | dfrefrel5 38481 | . 2 ⊢ ( RefRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥 ∧ Rel (𝑅 ↾ {𝐴}))) | |
| 4 | 1, 2, 3 | sylanblrc 590 | 1 ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 {csn 4585 class class class wbr 5102 dom cdm 5631 ran crn 5632 ↾ cres 5633 Rel wrel 5636 RefRel wrefrel 38148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-refrel 38476 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |