Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelressn | Structured version Visualization version GIF version |
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 36656) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.) |
Ref | Expression |
---|---|
refrelressn | ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refressn 36657 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥) | |
2 | relres 5932 | . 2 ⊢ Rel (𝑅 ↾ {𝐴}) | |
3 | dfrefrel5 36731 | . 2 ⊢ ( RefRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥 ∧ Rel (𝑅 ↾ {𝐴}))) | |
4 | 1, 2, 3 | sylanblrc 591 | 1 ⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∀wral 3061 ∩ cin 3891 {csn 4565 class class class wbr 5081 dom cdm 5600 ran crn 5601 ↾ cres 5602 Rel wrel 5605 RefRel wrefrel 36387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-refrel 36726 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |