Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelressn Structured version   Visualization version   GIF version

Theorem refrelressn 38569
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38487) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
refrelressn (𝐴𝑉 → RefRel (𝑅 ↾ {𝐴}))

Proof of Theorem refrelressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 refressn 38488 . 2 (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
2 relres 5953 . 2 Rel (𝑅 ↾ {𝐴})
3 dfrefrel5 38562 . 2 ( RefRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥 ∧ Rel (𝑅 ↾ {𝐴})))
41, 2, 3sylanblrc 590 1 (𝐴𝑉 → RefRel (𝑅 ↾ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  cin 3896  {csn 4573   class class class wbr 5089  dom cdm 5614  ran crn 5615  cres 5616  Rel wrel 5619   RefRel wrefrel 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-refrel 38557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator