Detailed syntax breakdown of Definition df-colinear
| Step | Hyp | Ref
| Expression |
| 1 | | ccolin 36038 |
. 2
class
Colinear |
| 2 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 3 | 2 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 4 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑛 |
| 6 | | cee 28903 |
. . . . . . . . 9
class
𝔼 |
| 7 | 5, 6 | cfv 6561 |
. . . . . . . 8
class
(𝔼‘𝑛) |
| 8 | 3, 7 | wcel 2108 |
. . . . . . 7
wff 𝑎 ∈ (𝔼‘𝑛) |
| 9 | | vb |
. . . . . . . . 9
setvar 𝑏 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑏 |
| 11 | 10, 7 | wcel 2108 |
. . . . . . 7
wff 𝑏 ∈ (𝔼‘𝑛) |
| 12 | | vc |
. . . . . . . . 9
setvar 𝑐 |
| 13 | 12 | cv 1539 |
. . . . . . . 8
class 𝑐 |
| 14 | 13, 7 | wcel 2108 |
. . . . . . 7
wff 𝑐 ∈ (𝔼‘𝑛) |
| 15 | 8, 11, 14 | w3a 1087 |
. . . . . 6
wff (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) |
| 16 | 10, 13 | cop 4632 |
. . . . . . . 8
class
〈𝑏, 𝑐〉 |
| 17 | | cbtwn 28904 |
. . . . . . . 8
class
Btwn |
| 18 | 3, 16, 17 | wbr 5143 |
. . . . . . 7
wff 𝑎 Btwn 〈𝑏, 𝑐〉 |
| 19 | 13, 3 | cop 4632 |
. . . . . . . 8
class
〈𝑐, 𝑎〉 |
| 20 | 10, 19, 17 | wbr 5143 |
. . . . . . 7
wff 𝑏 Btwn 〈𝑐, 𝑎〉 |
| 21 | 3, 10 | cop 4632 |
. . . . . . . 8
class
〈𝑎, 𝑏〉 |
| 22 | 13, 21, 17 | wbr 5143 |
. . . . . . 7
wff 𝑐 Btwn 〈𝑎, 𝑏〉 |
| 23 | 18, 20, 22 | w3o 1086 |
. . . . . 6
wff (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉) |
| 24 | 15, 23 | wa 395 |
. . . . 5
wff ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉)) |
| 25 | | cn 12266 |
. . . . 5
class
ℕ |
| 26 | 24, 4, 25 | wrex 3070 |
. . . 4
wff
∃𝑛 ∈
ℕ ((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑐 ∈
(𝔼‘𝑛)) ∧
(𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉)) |
| 27 | 26, 9, 12, 2 | coprab 7432 |
. . 3
class
{〈〈𝑏,
𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |
| 28 | 27 | ccnv 5684 |
. 2
class ◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |
| 29 | 1, 28 | wceq 1540 |
1
wff Colinear =
◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |