Detailed syntax breakdown of Definition df-colinear
Step | Hyp | Ref
| Expression |
1 | | ccolin 34339 |
. 2
class
Colinear |
2 | | va |
. . . . . . . . 9
setvar 𝑎 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑎 |
4 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
6 | | cee 27256 |
. . . . . . . . 9
class
𝔼 |
7 | 5, 6 | cfv 6433 |
. . . . . . . 8
class
(𝔼‘𝑛) |
8 | 3, 7 | wcel 2106 |
. . . . . . 7
wff 𝑎 ∈ (𝔼‘𝑛) |
9 | | vb |
. . . . . . . . 9
setvar 𝑏 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑏 |
11 | 10, 7 | wcel 2106 |
. . . . . . 7
wff 𝑏 ∈ (𝔼‘𝑛) |
12 | | vc |
. . . . . . . . 9
setvar 𝑐 |
13 | 12 | cv 1538 |
. . . . . . . 8
class 𝑐 |
14 | 13, 7 | wcel 2106 |
. . . . . . 7
wff 𝑐 ∈ (𝔼‘𝑛) |
15 | 8, 11, 14 | w3a 1086 |
. . . . . 6
wff (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) |
16 | 10, 13 | cop 4567 |
. . . . . . . 8
class
〈𝑏, 𝑐〉 |
17 | | cbtwn 27257 |
. . . . . . . 8
class
Btwn |
18 | 3, 16, 17 | wbr 5074 |
. . . . . . 7
wff 𝑎 Btwn 〈𝑏, 𝑐〉 |
19 | 13, 3 | cop 4567 |
. . . . . . . 8
class
〈𝑐, 𝑎〉 |
20 | 10, 19, 17 | wbr 5074 |
. . . . . . 7
wff 𝑏 Btwn 〈𝑐, 𝑎〉 |
21 | 3, 10 | cop 4567 |
. . . . . . . 8
class
〈𝑎, 𝑏〉 |
22 | 13, 21, 17 | wbr 5074 |
. . . . . . 7
wff 𝑐 Btwn 〈𝑎, 𝑏〉 |
23 | 18, 20, 22 | w3o 1085 |
. . . . . 6
wff (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉) |
24 | 15, 23 | wa 396 |
. . . . 5
wff ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉)) |
25 | | cn 11973 |
. . . . 5
class
ℕ |
26 | 24, 4, 25 | wrex 3065 |
. . . 4
wff
∃𝑛 ∈
ℕ ((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑐 ∈
(𝔼‘𝑛)) ∧
(𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉)) |
27 | 26, 9, 12, 2 | coprab 7276 |
. . 3
class
{〈〈𝑏,
𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |
28 | 27 | ccnv 5588 |
. 2
class ◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |
29 | 1, 28 | wceq 1539 |
1
wff Colinear =
◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |