Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearex Structured version   Visualization version   GIF version

Theorem colinearex 34577
Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinearex Colinear ∈ V

Proof of Theorem colinearex
Dummy variables 𝑎 𝑏 𝑐 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 34556 . 2 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
2 nnex 12117 . . . . 5 ℕ ∈ V
3 fvex 6852 . . . . . . 7 (𝔼‘𝑛) ∈ V
43, 3xpex 7679 . . . . . 6 ((𝔼‘𝑛) × (𝔼‘𝑛)) ∈ V
54, 3xpex 7679 . . . . 5 (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
62, 5iunex 7893 . . . 4 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
7 df-oprab 7355 . . . . 5 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} = {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))}
8 opelxpi 5668 . . . . . . . . . . . . . 14 ((𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
983adant1 1130 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
10 simp1 1136 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → 𝑎 ∈ (𝔼‘𝑛))
11 opelxpi 5668 . . . . . . . . . . . . 13 ((⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑎 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
129, 10, 11syl2anc 584 . . . . . . . . . . . 12 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1312adantr 481 . . . . . . . . . . 11 (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1413reximi 3085 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
15 eliun 4956 . . . . . . . . . 10 (⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1614, 15sylibr 233 . . . . . . . . 9 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
17 eleq1 2825 . . . . . . . . . 10 (𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ → (𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))))
1817biimpar 478 . . . . . . . . 9 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1916, 18sylan2 593 . . . . . . . 8 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2019exlimiv 1933 . . . . . . 7 (∃𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2120exlimivv 1935 . . . . . 6 (∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2221abssi 4025 . . . . 5 {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
237, 22eqsstri 3976 . . . 4 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
246, 23ssexi 5277 . . 3 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
2524cnvex 7854 . 2 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
261, 25eqeltri 2834 1 Colinear ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3o 1086  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wrex 3071  Vcvv 3443  cop 4590   ciun 4952   class class class wbr 5103   × cxp 5629  ccnv 5630  cfv 6493  {coprab 7352  cn 12111  𝔼cee 27682   Btwn cbtwn 27683   Colinear ccolin 34554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-om 7795  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-nn 12112  df-colinear 34556
This theorem is referenced by:  fvline  34661
  Copyright terms: Public domain W3C validator