Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearex Structured version   Visualization version   GIF version

Theorem colinearex 36055
Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinearex Colinear ∈ V

Proof of Theorem colinearex
Dummy variables 𝑎 𝑏 𝑐 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 36034 . 2 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
2 nnex 12199 . . . . 5 ℕ ∈ V
3 fvex 6874 . . . . . . 7 (𝔼‘𝑛) ∈ V
43, 3xpex 7732 . . . . . 6 ((𝔼‘𝑛) × (𝔼‘𝑛)) ∈ V
54, 3xpex 7732 . . . . 5 (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
62, 5iunex 7950 . . . 4 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
7 df-oprab 7394 . . . . 5 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} = {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))}
8 opelxpi 5678 . . . . . . . . . . . . . 14 ((𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
983adant1 1130 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
10 simp1 1136 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → 𝑎 ∈ (𝔼‘𝑛))
11 opelxpi 5678 . . . . . . . . . . . . 13 ((⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑎 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
129, 10, 11syl2anc 584 . . . . . . . . . . . 12 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1312adantr 480 . . . . . . . . . . 11 (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1413reximi 3068 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
15 eliun 4962 . . . . . . . . . 10 (⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1614, 15sylibr 234 . . . . . . . . 9 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
17 eleq1 2817 . . . . . . . . . 10 (𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ → (𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))))
1817biimpar 477 . . . . . . . . 9 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1916, 18sylan2 593 . . . . . . . 8 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2019exlimiv 1930 . . . . . . 7 (∃𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2120exlimivv 1932 . . . . . 6 (∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2221abssi 4036 . . . . 5 {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
237, 22eqsstri 3996 . . . 4 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
246, 23ssexi 5280 . . 3 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
2524cnvex 7904 . 2 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
261, 25eqeltri 2825 1 Colinear ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3o 1085  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  cop 4598   ciun 4958   class class class wbr 5110   × cxp 5639  ccnv 5640  cfv 6514  {coprab 7391  cn 12193  𝔼cee 28822   Btwn cbtwn 28823   Colinear ccolin 36032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-colinear 36034
This theorem is referenced by:  fvline  36139
  Copyright terms: Public domain W3C validator