Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearex Structured version   Visualization version   GIF version

Theorem colinearex 32498
Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinearex Colinear ∈ V

Proof of Theorem colinearex
Dummy variables 𝑎 𝑏 𝑐 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 32477 . 2 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
2 nnex 11227 . . . . 5 ℕ ∈ V
3 fvex 6342 . . . . . . 7 (𝔼‘𝑛) ∈ V
43, 3xpex 7108 . . . . . 6 ((𝔼‘𝑛) × (𝔼‘𝑛)) ∈ V
54, 3xpex 7108 . . . . 5 (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
62, 5iunex 7293 . . . 4 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
7 df-oprab 6796 . . . . 5 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} = {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))}
8 opelxpi 5288 . . . . . . . . . . . . . 14 ((𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
983adant1 1123 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
10 simp1 1129 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → 𝑎 ∈ (𝔼‘𝑛))
11 opelxpi 5288 . . . . . . . . . . . . 13 ((⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑎 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
129, 10, 11syl2anc 565 . . . . . . . . . . . 12 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1312adantr 466 . . . . . . . . . . 11 (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1413reximi 3158 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
15 eliun 4656 . . . . . . . . . 10 (⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1614, 15sylibr 224 . . . . . . . . 9 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
17 eleq1 2837 . . . . . . . . . 10 (𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ → (𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))))
1817biimpar 463 . . . . . . . . 9 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1916, 18sylan2 572 . . . . . . . 8 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2019exlimiv 2009 . . . . . . 7 (∃𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2120exlimivv 2011 . . . . . 6 (∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2221abssi 3824 . . . . 5 {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
237, 22eqsstri 3782 . . . 4 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
246, 23ssexi 4934 . . 3 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
2524cnvex 7259 . 2 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
261, 25eqeltri 2845 1 Colinear ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 382  w3o 1069  w3a 1070   = wceq 1630  wex 1851  wcel 2144  {cab 2756  wrex 3061  Vcvv 3349  cop 4320   ciun 4652   class class class wbr 4784   × cxp 5247  ccnv 5248  cfv 6031  {coprab 6793  cn 11221  𝔼cee 25988   Btwn cbtwn 25989   Colinear ccolin 32475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-i2m1 10205  ax-1ne0 10206  ax-rrecex 10209  ax-cnre 10210
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-nn 11222  df-colinear 32477
This theorem is referenced by:  fvline  32582
  Copyright terms: Public domain W3C validator