Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearex Structured version   Visualization version   GIF version

Theorem colinearex 33629
Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinearex Colinear ∈ V

Proof of Theorem colinearex
Dummy variables 𝑎 𝑏 𝑐 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 33608 . 2 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
2 nnex 11635 . . . . 5 ℕ ∈ V
3 fvex 6662 . . . . . . 7 (𝔼‘𝑛) ∈ V
43, 3xpex 7460 . . . . . 6 ((𝔼‘𝑛) × (𝔼‘𝑛)) ∈ V
54, 3xpex 7460 . . . . 5 (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
62, 5iunex 7655 . . . 4 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
7 df-oprab 7143 . . . . 5 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} = {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))}
8 opelxpi 5560 . . . . . . . . . . . . . 14 ((𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
983adant1 1127 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
10 simp1 1133 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → 𝑎 ∈ (𝔼‘𝑛))
11 opelxpi 5560 . . . . . . . . . . . . 13 ((⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑎 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
129, 10, 11syl2anc 587 . . . . . . . . . . . 12 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1312adantr 484 . . . . . . . . . . 11 (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1413reximi 3209 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
15 eliun 4888 . . . . . . . . . 10 (⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1614, 15sylibr 237 . . . . . . . . 9 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
17 eleq1 2880 . . . . . . . . . 10 (𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ → (𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))))
1817biimpar 481 . . . . . . . . 9 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1916, 18sylan2 595 . . . . . . . 8 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2019exlimiv 1931 . . . . . . 7 (∃𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2120exlimivv 1933 . . . . . 6 (∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2221abssi 4000 . . . . 5 {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
237, 22eqsstri 3952 . . . 4 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
246, 23ssexi 5193 . . 3 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
2524cnvex 7616 . 2 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
261, 25eqeltri 2889 1 Colinear ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3o 1083  w3a 1084   = wceq 1538  wex 1781  wcel 2112  {cab 2779  wrex 3110  Vcvv 3444  cop 4534   ciun 4884   class class class wbr 5033   × cxp 5521  ccnv 5522  cfv 6328  {coprab 7140  cn 11629  𝔼cee 26685   Btwn cbtwn 26686   Colinear ccolin 33606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-nn 11630  df-colinear 33608
This theorem is referenced by:  fvline  33713
  Copyright terms: Public domain W3C validator