Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinrel Structured version   Visualization version   GIF version

Theorem colinrel 34387
Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinrel Rel Colinear

Proof of Theorem colinrel
Dummy variables 𝑞 𝑝 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6013 . 2 Rel {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))}
2 df-colinear 34369 . . 3 Colinear = {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))}
32releqi 5690 . 2 (Rel Colinear ↔ Rel {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))})
41, 3mpbir 230 1 Rel Colinear
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3o 1084  w3a 1085  wcel 2101  wrex 3068  cop 4570   class class class wbr 5077  ccnv 5590  Rel wrel 5596  cfv 6447  {coprab 7296  cn 12001  𝔼cee 27284   Btwn cbtwn 27285   Colinear ccolin 34367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1540  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3436  df-in 3896  df-ss 3906  df-opab 5140  df-xp 5597  df-rel 5598  df-cnv 5599  df-colinear 34369
This theorem is referenced by:  brcolinear2  34388
  Copyright terms: Public domain W3C validator