![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > colinrel | Structured version Visualization version GIF version |
Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
colinrel | ⊢ Rel Colinear |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5720 | . 2 ⊢ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
2 | df-colinear 32659 | . . 3 ⊢ Colinear = ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
3 | 2 | releqi 5407 | . 2 ⊢ (Rel Colinear ↔ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))}) |
4 | 1, 3 | mpbir 223 | 1 ⊢ Rel Colinear |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∨ w3o 1107 ∧ w3a 1108 ∈ wcel 2157 ∃wrex 3090 〈cop 4374 class class class wbr 4843 ◡ccnv 5311 Rel wrel 5317 ‘cfv 6101 {coprab 6879 ℕcn 11312 𝔼cee 26125 Btwn cbtwn 26126 Colinear ccolin 32657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-colinear 32659 |
This theorem is referenced by: brcolinear2 32678 |
Copyright terms: Public domain | W3C validator |