| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > colinrel | Structured version Visualization version GIF version | ||
| Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| colinrel | ⊢ Rel Colinear |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6057 | . 2 ⊢ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
| 2 | df-colinear 36104 | . . 3 ⊢ Colinear = ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
| 3 | 2 | releqi 5722 | . 2 ⊢ (Rel Colinear ↔ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))}) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Rel Colinear |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 ∈ wcel 2113 ∃wrex 3057 〈cop 4581 class class class wbr 5093 ◡ccnv 5618 Rel wrel 5624 ‘cfv 6486 {coprab 7353 ℕcn 12132 𝔼cee 28867 Btwn cbtwn 28868 Colinear ccolin 36102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-colinear 36104 |
| This theorem is referenced by: brcolinear2 36123 |
| Copyright terms: Public domain | W3C validator |