![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > colinrel | Structured version Visualization version GIF version |
Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
colinrel | ⊢ Rel Colinear |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6134 | . 2 ⊢ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
2 | df-colinear 36003 | . . 3 ⊢ Colinear = ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
3 | 2 | releqi 5801 | . 2 ⊢ (Rel Colinear ↔ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))}) |
4 | 1, 3 | mpbir 231 | 1 ⊢ Rel Colinear |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ w3o 1086 ∧ w3a 1087 ∈ wcel 2108 ∃wrex 3076 〈cop 4654 class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 ‘cfv 6573 {coprab 7449 ℕcn 12293 𝔼cee 28921 Btwn cbtwn 28922 Colinear ccolin 36001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-colinear 36003 |
This theorem is referenced by: brcolinear2 36022 |
Copyright terms: Public domain | W3C validator |