Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > colinrel | Structured version Visualization version GIF version |
Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
colinrel | ⊢ Rel Colinear |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6013 | . 2 ⊢ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
2 | df-colinear 34369 | . . 3 ⊢ Colinear = ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))} | |
3 | 2 | releqi 5690 | . 2 ⊢ (Rel Colinear ↔ Rel ◡{〈〈𝑞, 𝑟〉, 𝑝〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn 〈𝑞, 𝑟〉 ∨ 𝑞 Btwn 〈𝑟, 𝑝〉 ∨ 𝑟 Btwn 〈𝑝, 𝑞〉))}) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Rel Colinear |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ w3o 1084 ∧ w3a 1085 ∈ wcel 2101 ∃wrex 3068 〈cop 4570 class class class wbr 5077 ◡ccnv 5590 Rel wrel 5596 ‘cfv 6447 {coprab 7296 ℕcn 12001 𝔼cee 27284 Btwn cbtwn 27285 Colinear ccolin 34367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-in 3896 df-ss 3906 df-opab 5140 df-xp 5597 df-rel 5598 df-cnv 5599 df-colinear 34369 |
This theorem is referenced by: brcolinear2 34388 |
Copyright terms: Public domain | W3C validator |