Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinrel Structured version   Visualization version   GIF version

Theorem colinrel 36058
Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinrel Rel Colinear

Proof of Theorem colinrel
Dummy variables 𝑞 𝑝 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6122 . 2 Rel {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))}
2 df-colinear 36040 . . 3 Colinear = {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))}
32releqi 5787 . 2 (Rel Colinear ↔ Rel {⟨⟨𝑞, 𝑟⟩, 𝑝⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑟 ∈ (𝔼‘𝑛)) ∧ (𝑝 Btwn ⟨𝑞, 𝑟⟩ ∨ 𝑞 Btwn ⟨𝑟, 𝑝⟩ ∨ 𝑟 Btwn ⟨𝑝, 𝑞⟩))})
41, 3mpbir 231 1 Rel Colinear
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3o 1086  w3a 1087  wcel 2108  wrex 3070  cop 4632   class class class wbr 5143  ccnv 5684  Rel wrel 5690  cfv 6561  {coprab 7432  cn 12266  𝔼cee 28903   Btwn cbtwn 28904   Colinear ccolin 36038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-ss 3968  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-colinear 36040
This theorem is referenced by:  brcolinear2  36059
  Copyright terms: Public domain W3C validator