Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colineardim1 Structured version   Visualization version   GIF version

Theorem colineardim1 35022
Description: If 𝐴 is colinear with 𝐵 and 𝐶, then 𝐴 is in the same space as 𝐵. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colineardim1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))

Proof of Theorem colineardim1
Dummy variables 𝑎 𝑏 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 35000 . . 3 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
21breqi 5154 . 2 (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩)
3 simpr1 1195 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → 𝐴𝑉)
4 opex 5464 . . . 4 𝐵, 𝐶⟩ ∈ V
5 brcnvg 5878 . . . 4 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
63, 4, 5sylancl 587 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
7 df-br 5149 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))})
8 eleq1 2822 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi2d 1442 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛))))
10 opeq1 4873 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1110breq2d 5160 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑎 Btwn ⟨𝑏, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝑐⟩))
12 breq1 5151 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝑐, 𝑎⟩))
13 opeq2 4874 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝐵⟩)
1413breq2d 5160 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑐 Btwn ⟨𝑎, 𝑏⟩ ↔ 𝑐 Btwn ⟨𝑎, 𝐵⟩))
1511, 12, 143orbi123d 1436 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)))
169, 15anbi12d 632 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
1716rexbidv 3179 . . . . . . . 8 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
18 eleq1 2822 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
19183anbi3d 1443 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
20 opeq2 4874 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2120breq2d 5160 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑎 Btwn ⟨𝐵, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝐶⟩))
22 opeq1 4873 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝑐, 𝑎⟩ = ⟨𝐶, 𝑎⟩)
2322breq2d 5160 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝑎⟩))
24 breq1 5151 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝑎, 𝐵⟩))
2521, 23, 243orbi123d 1436 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)))
2619, 25anbi12d 632 . . . . . . . . 9 (𝑐 = 𝐶 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
2726rexbidv 3179 . . . . . . . 8 (𝑐 = 𝐶 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
28 eleq1 2822 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
29283anbi1d 1441 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
30 breq1 5151 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐵, 𝐶⟩))
31 opeq2 4874 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝐶, 𝑎⟩ = ⟨𝐶, 𝐴⟩)
3231breq2d 5160 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐵 Btwn ⟨𝐶, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
33 opeq1 4873 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
3433breq2d 5160 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐶 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
3530, 32, 343orbi123d 1436 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
3629, 35anbi12d 632 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3736rexbidv 3179 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3817, 27, 37eloprabg 7515 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊𝐴𝑉) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
39383comr 1126 . . . . . 6 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
4039adantl 483 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
41 simpl 484 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))
42 simp2 1138 . . . . . . . . . 10 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → 𝐵 ∈ (𝔼‘𝑁))
4342anim2i 618 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)))
44 3simpa 1149 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))
4544anim2i 618 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))) → (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 axdimuniq 28161 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
4746adantrrl 723 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝑁 = 𝑛)
48 simprrl 780 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
49 fveq2 6889 . . . . . . . . . . . 12 (𝑁 = 𝑛 → (𝔼‘𝑁) = (𝔼‘𝑛))
5049eleq2d 2820 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (𝔼‘𝑛)))
5148, 50syl5ibrcom 246 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → (𝑁 = 𝑛𝐴 ∈ (𝔼‘𝑁)))
5247, 51mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5343, 45, 52syl2an 597 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5453exp32 422 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → 𝐴 ∈ (𝔼‘𝑁))))
5541, 54syl7 74 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁))))
5655rexlimdv 3154 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁)))
5740, 56sylbid 239 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} → 𝐴 ∈ (𝔼‘𝑁)))
587, 57biimtrid 241 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴𝐴 ∈ (𝔼‘𝑁)))
596, 58sylbid 239 . 2 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
602, 59biimtrid 241 1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  Vcvv 3475  cop 4634   class class class wbr 5148  ccnv 5675  cfv 6541  {coprab 7407  cn 12209  𝔼cee 28136   Btwn cbtwn 28137   Colinear ccolin 34998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-z 12556  df-uz 12820  df-fz 13482  df-ee 28139  df-colinear 35000
This theorem is referenced by:  liness  35106
  Copyright terms: Public domain W3C validator