Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colineardim1 Structured version   Visualization version   GIF version

Theorem colineardim1 36084
Description: If 𝐴 is colinear with 𝐵 and 𝐶, then 𝐴 is in the same space as 𝐵. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colineardim1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))

Proof of Theorem colineardim1
Dummy variables 𝑎 𝑏 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 36062 . . 3 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
21breqi 5130 . 2 (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩)
3 simpr1 1195 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → 𝐴𝑉)
4 opex 5444 . . . 4 𝐵, 𝐶⟩ ∈ V
5 brcnvg 5864 . . . 4 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
63, 4, 5sylancl 586 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
7 df-br 5125 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))})
8 eleq1 2823 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi2d 1443 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛))))
10 opeq1 4854 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1110breq2d 5136 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑎 Btwn ⟨𝑏, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝑐⟩))
12 breq1 5127 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝑐, 𝑎⟩))
13 opeq2 4855 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝐵⟩)
1413breq2d 5136 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑐 Btwn ⟨𝑎, 𝑏⟩ ↔ 𝑐 Btwn ⟨𝑎, 𝐵⟩))
1511, 12, 143orbi123d 1437 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)))
169, 15anbi12d 632 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
1716rexbidv 3165 . . . . . . . 8 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
18 eleq1 2823 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
19183anbi3d 1444 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
20 opeq2 4855 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2120breq2d 5136 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑎 Btwn ⟨𝐵, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝐶⟩))
22 opeq1 4854 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝑐, 𝑎⟩ = ⟨𝐶, 𝑎⟩)
2322breq2d 5136 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝑎⟩))
24 breq1 5127 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝑎, 𝐵⟩))
2521, 23, 243orbi123d 1437 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)))
2619, 25anbi12d 632 . . . . . . . . 9 (𝑐 = 𝐶 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
2726rexbidv 3165 . . . . . . . 8 (𝑐 = 𝐶 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
28 eleq1 2823 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
29283anbi1d 1442 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
30 breq1 5127 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐵, 𝐶⟩))
31 opeq2 4855 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝐶, 𝑎⟩ = ⟨𝐶, 𝐴⟩)
3231breq2d 5136 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐵 Btwn ⟨𝐶, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
33 opeq1 4854 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
3433breq2d 5136 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐶 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
3530, 32, 343orbi123d 1437 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
3629, 35anbi12d 632 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3736rexbidv 3165 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3817, 27, 37eloprabg 7522 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊𝐴𝑉) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
39383comr 1125 . . . . . 6 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
4039adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
41 simpl 482 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))
42 simp2 1137 . . . . . . . . . 10 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → 𝐵 ∈ (𝔼‘𝑁))
4342anim2i 617 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)))
44 3simpa 1148 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))
4544anim2i 617 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))) → (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 axdimuniq 28897 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
4746adantrrl 724 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝑁 = 𝑛)
48 simprrl 780 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
49 fveq2 6881 . . . . . . . . . . . 12 (𝑁 = 𝑛 → (𝔼‘𝑁) = (𝔼‘𝑛))
5049eleq2d 2821 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (𝔼‘𝑛)))
5148, 50syl5ibrcom 247 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → (𝑁 = 𝑛𝐴 ∈ (𝔼‘𝑁)))
5247, 51mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5343, 45, 52syl2an 596 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5453exp32 420 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → 𝐴 ∈ (𝔼‘𝑁))))
5541, 54syl7 74 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁))))
5655rexlimdv 3140 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁)))
5740, 56sylbid 240 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} → 𝐴 ∈ (𝔼‘𝑁)))
587, 57biimtrid 242 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴𝐴 ∈ (𝔼‘𝑁)))
596, 58sylbid 240 . 2 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
602, 59biimtrid 242 1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  cop 4612   class class class wbr 5124  ccnv 5658  cfv 6536  {coprab 7411  cn 12245  𝔼cee 28872   Btwn cbtwn 28873   Colinear ccolin 36060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-z 12594  df-uz 12858  df-fz 13530  df-ee 28875  df-colinear 36062
This theorem is referenced by:  liness  36168
  Copyright terms: Public domain W3C validator