Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colineardim1 Structured version   Visualization version   GIF version

Theorem colineardim1 36056
Description: If 𝐴 is colinear with 𝐵 and 𝐶, then 𝐴 is in the same space as 𝐵. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colineardim1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))

Proof of Theorem colineardim1
Dummy variables 𝑎 𝑏 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 36034 . . 3 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
21breqi 5116 . 2 (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩)
3 simpr1 1195 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → 𝐴𝑉)
4 opex 5427 . . . 4 𝐵, 𝐶⟩ ∈ V
5 brcnvg 5846 . . . 4 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
63, 4, 5sylancl 586 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
7 df-br 5111 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))})
8 eleq1 2817 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi2d 1443 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛))))
10 opeq1 4840 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1110breq2d 5122 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑎 Btwn ⟨𝑏, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝑐⟩))
12 breq1 5113 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝑐, 𝑎⟩))
13 opeq2 4841 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝐵⟩)
1413breq2d 5122 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑐 Btwn ⟨𝑎, 𝑏⟩ ↔ 𝑐 Btwn ⟨𝑎, 𝐵⟩))
1511, 12, 143orbi123d 1437 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)))
169, 15anbi12d 632 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
1716rexbidv 3158 . . . . . . . 8 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
18 eleq1 2817 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
19183anbi3d 1444 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
20 opeq2 4841 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2120breq2d 5122 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑎 Btwn ⟨𝐵, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝐶⟩))
22 opeq1 4840 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝑐, 𝑎⟩ = ⟨𝐶, 𝑎⟩)
2322breq2d 5122 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝑎⟩))
24 breq1 5113 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝑎, 𝐵⟩))
2521, 23, 243orbi123d 1437 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)))
2619, 25anbi12d 632 . . . . . . . . 9 (𝑐 = 𝐶 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
2726rexbidv 3158 . . . . . . . 8 (𝑐 = 𝐶 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
28 eleq1 2817 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
29283anbi1d 1442 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
30 breq1 5113 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐵, 𝐶⟩))
31 opeq2 4841 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝐶, 𝑎⟩ = ⟨𝐶, 𝐴⟩)
3231breq2d 5122 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐵 Btwn ⟨𝐶, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
33 opeq1 4840 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
3433breq2d 5122 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐶 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
3530, 32, 343orbi123d 1437 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
3629, 35anbi12d 632 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3736rexbidv 3158 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3817, 27, 37eloprabg 7502 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊𝐴𝑉) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
39383comr 1125 . . . . . 6 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
4039adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
41 simpl 482 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))
42 simp2 1137 . . . . . . . . . 10 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → 𝐵 ∈ (𝔼‘𝑁))
4342anim2i 617 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)))
44 3simpa 1148 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))
4544anim2i 617 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))) → (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 axdimuniq 28847 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
4746adantrrl 724 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝑁 = 𝑛)
48 simprrl 780 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
49 fveq2 6861 . . . . . . . . . . . 12 (𝑁 = 𝑛 → (𝔼‘𝑁) = (𝔼‘𝑛))
5049eleq2d 2815 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (𝔼‘𝑛)))
5148, 50syl5ibrcom 247 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → (𝑁 = 𝑛𝐴 ∈ (𝔼‘𝑁)))
5247, 51mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5343, 45, 52syl2an 596 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5453exp32 420 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → 𝐴 ∈ (𝔼‘𝑁))))
5541, 54syl7 74 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁))))
5655rexlimdv 3133 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁)))
5740, 56sylbid 240 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} → 𝐴 ∈ (𝔼‘𝑁)))
587, 57biimtrid 242 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴𝐴 ∈ (𝔼‘𝑁)))
596, 58sylbid 240 . 2 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
602, 59biimtrid 242 1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cop 4598   class class class wbr 5110  ccnv 5640  cfv 6514  {coprab 7391  cn 12193  𝔼cee 28822   Btwn cbtwn 28823   Colinear ccolin 36032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-z 12537  df-uz 12801  df-fz 13476  df-ee 28825  df-colinear 36034
This theorem is referenced by:  liness  36140
  Copyright terms: Public domain W3C validator