|   | Mathbox for Rohan Ridenour | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coll | Structured version Visualization version GIF version | ||
| Description: Define the collection operation. This is similar to the image set operation “, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| df-coll | ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cF | . . 3 class 𝐹 | |
| 3 | 1, 2 | ccoll 44269 | . 2 class (𝐹 Coll 𝐴) | 
| 4 | vx | . . 3 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 | 
| 6 | 5 | csn 4626 | . . . . 5 class {𝑥} | 
| 7 | 2, 6 | cima 5688 | . . . 4 class (𝐹 “ {𝑥}) | 
| 8 | 7 | cscott 44254 | . . 3 class Scott (𝐹 “ {𝑥}) | 
| 9 | 4, 1, 8 | ciun 4991 | . 2 class ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | 
| 10 | 3, 9 | wceq 1540 | 1 wff (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dfcoll2 44271 colleq12d 44272 nfcoll 44275 collexd 44276 | 
| Copyright terms: Public domain | W3C validator |