| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coll | Structured version Visualization version GIF version | ||
| Description: Define the collection operation. This is similar to the image set operation “, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| df-coll | ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cF | . . 3 class 𝐹 | |
| 3 | 1, 2 | ccoll 44241 | . 2 class (𝐹 Coll 𝐴) |
| 4 | vx | . . 3 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | 5 | csn 4606 | . . . . 5 class {𝑥} |
| 7 | 2, 6 | cima 5662 | . . . 4 class (𝐹 “ {𝑥}) |
| 8 | 7 | cscott 44226 | . . 3 class Scott (𝐹 “ {𝑥}) |
| 9 | 4, 1, 8 | ciun 4972 | . 2 class ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
| 10 | 3, 9 | wceq 1540 | 1 wff (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfcoll2 44243 colleq12d 44244 nfcoll 44247 collexd 44248 |
| Copyright terms: Public domain | W3C validator |