Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-coll | Structured version Visualization version GIF version |
Description: Define the collection operation. This is similar to the image set operation “, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
df-coll | ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cF | . . 3 class 𝐹 | |
3 | 1, 2 | ccoll 41757 | . 2 class (𝐹 Coll 𝐴) |
4 | vx | . . 3 setvar 𝑥 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑥 |
6 | 5 | csn 4558 | . . . . 5 class {𝑥} |
7 | 2, 6 | cima 5583 | . . . 4 class (𝐹 “ {𝑥}) |
8 | 7 | cscott 41742 | . . 3 class Scott (𝐹 “ {𝑥}) |
9 | 4, 1, 8 | ciun 4921 | . 2 class ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
10 | 3, 9 | wceq 1539 | 1 wff (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
Colors of variables: wff setvar class |
This definition is referenced by: dfcoll2 41759 colleq12d 41760 nfcoll 41763 collexd 41764 |
Copyright terms: Public domain | W3C validator |