Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  collexd Structured version   Visualization version   GIF version

Theorem collexd 43479
Description: The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
collexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
collexd (𝜑 → (𝐹 Coll 𝐴) ∈ V)

Proof of Theorem collexd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-coll 43473 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
2 collexd.1 . . 3 (𝜑𝐴𝑉)
3 scottex2 43467 . . . . 5 Scott (𝐹 “ {𝑥}) ∈ V
43a1i 11 . . . 4 (𝜑 → Scott (𝐹 “ {𝑥}) ∈ V)
54ralrimivw 3149 . . 3 (𝜑 → ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
6 iunexg 7954 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V) → 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
72, 5, 6syl2anc 583 . 2 (𝜑 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
81, 7eqeltrid 2836 1 (𝜑 → (𝐹 Coll 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wral 3060  Vcvv 3473  {csn 4628   ciun 4997  cima 5679  Scott cscott 43457   Coll ccoll 43472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-r1 9765  df-rank 9766  df-scott 43458  df-coll 43473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator