Mathbox for Rohan Ridenour < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  collexd Structured version   Visualization version   GIF version

Theorem collexd 40885
 Description: The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
collexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
collexd (𝜑 → (𝐹 Coll 𝐴) ∈ V)

Proof of Theorem collexd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-coll 40879 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
2 collexd.1 . . 3 (𝜑𝐴𝑉)
3 scottex2 40873 . . . . 5 Scott (𝐹 “ {𝑥}) ∈ V
43a1i 11 . . . 4 (𝜑 → Scott (𝐹 “ {𝑥}) ∈ V)
54ralrimivw 3178 . . 3 (𝜑 → ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
6 iunexg 7659 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V) → 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
72, 5, 6syl2anc 587 . 2 (𝜑 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
81, 7eqeltrid 2920 1 (𝜑 → (𝐹 Coll 𝐴) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2115  ∀wral 3133  Vcvv 3480  {csn 4550  ∪ ciun 4905   “ cima 5545  Scott cscott 40863   Coll ccoll 40878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-reg 9053  ax-inf2 9101 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-r1 9190  df-rank 9191  df-scott 40864  df-coll 40879 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator