Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > collexd | Structured version Visualization version GIF version |
Description: The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
collexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
collexd | ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coll 41731 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
2 | collexd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | scottex2 41725 | . . . . 5 ⊢ Scott (𝐹 “ {𝑥}) ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → Scott (𝐹 “ {𝑥}) ∈ V) |
5 | 4 | ralrimivw 3109 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) ∈ V) |
6 | iunexg 7776 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) ∈ V) → ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) ∈ V) | |
7 | 2, 5, 6 | syl2anc 587 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) ∈ V) |
8 | 1, 7 | eqeltrid 2844 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ∀wral 3064 Vcvv 3423 {csn 4558 ∪ ciun 4921 “ cima 5582 Scott cscott 41715 Coll ccoll 41730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-reg 9256 ax-inf2 9304 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-r1 9428 df-rank 9429 df-scott 41716 df-coll 41731 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |