Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  collexd Structured version   Visualization version   GIF version

Theorem collexd 43725
Description: The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
collexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
collexd (𝜑 → (𝐹 Coll 𝐴) ∈ V)

Proof of Theorem collexd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-coll 43719 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
2 collexd.1 . . 3 (𝜑𝐴𝑉)
3 scottex2 43713 . . . . 5 Scott (𝐹 “ {𝑥}) ∈ V
43a1i 11 . . . 4 (𝜑 → Scott (𝐹 “ {𝑥}) ∈ V)
54ralrimivw 3147 . . 3 (𝜑 → ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
6 iunexg 7973 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V) → 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
72, 5, 6syl2anc 582 . 2 (𝜑 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
81, 7eqeltrid 2833 1 (𝜑 → (𝐹 Coll 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wral 3058  Vcvv 3473  {csn 4632   ciun 5000  cima 5685  Scott cscott 43703   Coll ccoll 43718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-reg 9623  ax-inf2 9672
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-r1 9795  df-rank 9796  df-scott 43704  df-coll 43719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator