Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  collexd Structured version   Visualization version   GIF version

Theorem collexd 41875
Description: The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
collexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
collexd (𝜑 → (𝐹 Coll 𝐴) ∈ V)

Proof of Theorem collexd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-coll 41869 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
2 collexd.1 . . 3 (𝜑𝐴𝑉)
3 scottex2 41863 . . . . 5 Scott (𝐹 “ {𝑥}) ∈ V
43a1i 11 . . . 4 (𝜑 → Scott (𝐹 “ {𝑥}) ∈ V)
54ralrimivw 3104 . . 3 (𝜑 → ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
6 iunexg 7806 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V) → 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
72, 5, 6syl2anc 584 . 2 (𝜑 𝑥𝐴 Scott (𝐹 “ {𝑥}) ∈ V)
81, 7eqeltrid 2843 1 (𝜑 → (𝐹 Coll 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3064  Vcvv 3432  {csn 4561   ciun 4924  cima 5592  Scott cscott 41853   Coll ccoll 41868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523  df-scott 41854  df-coll 41869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator