![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > colleq12d | Structured version Visualization version GIF version |
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
colleq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
colleq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
colleq12d | ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colleq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | colleq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | imaeq1d 6058 | . . . 4 ⊢ (𝜑 → (𝐹 “ {𝑥}) = (𝐺 “ {𝑥})) |
4 | 3 | scotteqd 42986 | . . 3 ⊢ (𝜑 → Scott (𝐹 “ {𝑥}) = Scott (𝐺 “ {𝑥})) |
5 | 1, 4 | iuneq12d 5025 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥})) |
6 | df-coll 43000 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
7 | df-coll 43000 | . 2 ⊢ (𝐺 Coll 𝐵) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥}) | |
8 | 5, 6, 7 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 {csn 4628 ∪ ciun 4997 “ cima 5679 Scott cscott 42984 Coll ccoll 42999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-iun 4999 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-scott 42985 df-coll 43000 |
This theorem is referenced by: colleq1 43003 colleq2 43004 |
Copyright terms: Public domain | W3C validator |