Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > colleq12d | Structured version Visualization version GIF version |
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
colleq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
colleq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
colleq12d | ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colleq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | colleq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | imaeq1d 5957 | . . . 4 ⊢ (𝜑 → (𝐹 “ {𝑥}) = (𝐺 “ {𝑥})) |
4 | 3 | scotteqd 41744 | . . 3 ⊢ (𝜑 → Scott (𝐹 “ {𝑥}) = Scott (𝐺 “ {𝑥})) |
5 | 1, 4 | iuneq12d 4949 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥})) |
6 | df-coll 41758 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
7 | df-coll 41758 | . 2 ⊢ (𝐺 Coll 𝐵) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥}) | |
8 | 5, 6, 7 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {csn 4558 ∪ ciun 4921 “ cima 5583 Scott cscott 41742 Coll ccoll 41757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-iun 4923 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-scott 41743 df-coll 41758 |
This theorem is referenced by: colleq1 41761 colleq2 41762 |
Copyright terms: Public domain | W3C validator |