| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > colleq12d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| colleq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| colleq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| colleq12d | ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colleq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | colleq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 3 | 2 | imaeq1d 6030 | . . . 4 ⊢ (𝜑 → (𝐹 “ {𝑥}) = (𝐺 “ {𝑥})) |
| 4 | 3 | scotteqd 44226 | . . 3 ⊢ (𝜑 → Scott (𝐹 “ {𝑥}) = Scott (𝐺 “ {𝑥})) |
| 5 | 1, 4 | iuneq12d 4985 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥})) |
| 6 | df-coll 44240 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
| 7 | df-coll 44240 | . 2 ⊢ (𝐺 Coll 𝐵) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥}) | |
| 8 | 5, 6, 7 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4589 ∪ ciun 4955 “ cima 5641 Scott cscott 44224 Coll ccoll 44239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-iun 4957 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-scott 44225 df-coll 44240 |
| This theorem is referenced by: colleq1 44243 colleq2 44244 |
| Copyright terms: Public domain | W3C validator |