Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colleq12d Structured version   Visualization version   GIF version

Theorem colleq12d 43002
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
colleq12d.1 (𝜑𝐹 = 𝐺)
colleq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
colleq12d (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵))

Proof of Theorem colleq12d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 colleq12d.2 . . 3 (𝜑𝐴 = 𝐵)
2 colleq12d.1 . . . . 5 (𝜑𝐹 = 𝐺)
32imaeq1d 6058 . . . 4 (𝜑 → (𝐹 “ {𝑥}) = (𝐺 “ {𝑥}))
43scotteqd 42986 . . 3 (𝜑 → Scott (𝐹 “ {𝑥}) = Scott (𝐺 “ {𝑥}))
51, 4iuneq12d 5025 . 2 (𝜑 𝑥𝐴 Scott (𝐹 “ {𝑥}) = 𝑥𝐵 Scott (𝐺 “ {𝑥}))
6 df-coll 43000 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
7 df-coll 43000 . 2 (𝐺 Coll 𝐵) = 𝑥𝐵 Scott (𝐺 “ {𝑥})
85, 6, 73eqtr4g 2797 1 (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {csn 4628   ciun 4997  cima 5679  Scott cscott 42984   Coll ccoll 42999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-scott 42985  df-coll 43000
This theorem is referenced by:  colleq1  43003  colleq2  43004
  Copyright terms: Public domain W3C validator