Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > colleq12d | Structured version Visualization version GIF version |
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
colleq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
colleq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
colleq12d | ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colleq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | colleq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | imaeq1d 5998 | . . . 4 ⊢ (𝜑 → (𝐹 “ {𝑥}) = (𝐺 “ {𝑥})) |
4 | 3 | scotteqd 42176 | . . 3 ⊢ (𝜑 → Scott (𝐹 “ {𝑥}) = Scott (𝐺 “ {𝑥})) |
5 | 1, 4 | iuneq12d 4969 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥})) |
6 | df-coll 42190 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
7 | df-coll 42190 | . 2 ⊢ (𝐺 Coll 𝐵) = ∪ 𝑥 ∈ 𝐵 Scott (𝐺 “ {𝑥}) | |
8 | 5, 6, 7 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 {csn 4573 ∪ ciun 4941 “ cima 5623 Scott cscott 42174 Coll ccoll 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-iun 4943 df-br 5093 df-opab 5155 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-scott 42175 df-coll 42190 |
This theorem is referenced by: colleq1 42193 colleq2 42194 |
Copyright terms: Public domain | W3C validator |