Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfcoll Structured version   Visualization version   GIF version

Theorem nfcoll 44218
Description: Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
nfcoll.1 𝑥𝐹
nfcoll.2 𝑥𝐴
Assertion
Ref Expression
nfcoll 𝑥(𝐹 Coll 𝐴)

Proof of Theorem nfcoll
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-coll 44213 . 2 (𝐹 Coll 𝐴) = 𝑦𝐴 Scott (𝐹 “ {𝑦})
2 nfcoll.2 . . 3 𝑥𝐴
3 nfcoll.1 . . . . 5 𝑥𝐹
4 nfcv 2891 . . . . 5 𝑥{𝑦}
53, 4nfima 6028 . . . 4 𝑥(𝐹 “ {𝑦})
65nfscott 44201 . . 3 𝑥Scott (𝐹 “ {𝑦})
72, 6nfiun 4983 . 2 𝑥 𝑦𝐴 Scott (𝐹 “ {𝑦})
81, 7nfcxfr 2889 1 𝑥(𝐹 Coll 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  {csn 4585   ciun 4951  cima 5634  Scott cscott 44197   Coll ccoll 44212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-iun 4953  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-scott 44198  df-coll 44213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator