| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfcoll | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| nfcoll.1 | ⊢ Ⅎ𝑥𝐹 |
| nfcoll.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcoll | ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coll 44275 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑦 ∈ 𝐴 Scott (𝐹 “ {𝑦}) | |
| 2 | nfcoll.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcoll.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥{𝑦} | |
| 5 | 3, 4 | nfima 6085 | . . . 4 ⊢ Ⅎ𝑥(𝐹 “ {𝑦}) |
| 6 | 5 | nfscott 44263 | . . 3 ⊢ Ⅎ𝑥Scott (𝐹 “ {𝑦}) |
| 7 | 2, 6 | nfiun 5022 | . 2 ⊢ Ⅎ𝑥∪ 𝑦 ∈ 𝐴 Scott (𝐹 “ {𝑦}) |
| 8 | 1, 7 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2889 {csn 4625 ∪ ciun 4990 “ cima 5687 Scott cscott 44259 Coll ccoll 44274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-iun 4992 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-scott 44260 df-coll 44275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |