| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfcoll | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| nfcoll.1 | ⊢ Ⅎ𝑥𝐹 |
| nfcoll.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcoll | ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coll 44408 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑦 ∈ 𝐴 Scott (𝐹 “ {𝑦}) | |
| 2 | nfcoll.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcoll.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥{𝑦} | |
| 5 | 3, 4 | nfima 6024 | . . . 4 ⊢ Ⅎ𝑥(𝐹 “ {𝑦}) |
| 6 | 5 | nfscott 44396 | . . 3 ⊢ Ⅎ𝑥Scott (𝐹 “ {𝑦}) |
| 7 | 2, 6 | nfiun 4975 | . 2 ⊢ Ⅎ𝑥∪ 𝑦 ∈ 𝐴 Scott (𝐹 “ {𝑦}) |
| 8 | 1, 7 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 {csn 4577 ∪ ciun 4943 “ cima 5624 Scott cscott 44392 Coll ccoll 44407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-iun 4945 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-scott 44393 df-coll 44408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |