Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfcoll Structured version   Visualization version   GIF version

Theorem nfcoll 44413
Description: Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
nfcoll.1 𝑥𝐹
nfcoll.2 𝑥𝐴
Assertion
Ref Expression
nfcoll 𝑥(𝐹 Coll 𝐴)

Proof of Theorem nfcoll
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-coll 44408 . 2 (𝐹 Coll 𝐴) = 𝑦𝐴 Scott (𝐹 “ {𝑦})
2 nfcoll.2 . . 3 𝑥𝐴
3 nfcoll.1 . . . . 5 𝑥𝐹
4 nfcv 2895 . . . . 5 𝑥{𝑦}
53, 4nfima 6024 . . . 4 𝑥(𝐹 “ {𝑦})
65nfscott 44396 . . 3 𝑥Scott (𝐹 “ {𝑦})
72, 6nfiun 4975 . 2 𝑥 𝑦𝐴 Scott (𝐹 “ {𝑦})
81, 7nfcxfr 2893 1 𝑥(𝐹 Coll 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2880  {csn 4577   ciun 4943  cima 5624  Scott cscott 44392   Coll ccoll 44407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-iun 4945  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-scott 44393  df-coll 44408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator