Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoll2 Structured version   Visualization version   GIF version

Theorem dfcoll2 44291
Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
dfcoll2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐹
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfcoll2
StepHypRef Expression
1 df-coll 44290 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
2 imasng 6033 . . . 4 (𝑥𝐴 → (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦})
32scotteqd 44276 . . 3 (𝑥𝐴 → Scott (𝐹 “ {𝑥}) = Scott {𝑦𝑥𝐹𝑦})
43iuneq2i 4963 . 2 𝑥𝐴 Scott (𝐹 “ {𝑥}) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
51, 4eqtri 2754 1 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  {csn 4576   ciun 4941   class class class wbr 5091  cima 5619  Scott cscott 44274   Coll ccoll 44289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-iun 4943  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-scott 44275  df-coll 44290
This theorem is referenced by:  cpcolld  44297  grucollcld  44299
  Copyright terms: Public domain W3C validator