Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoll2 Structured version   Visualization version   GIF version

Theorem dfcoll2 44221
Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
dfcoll2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐹
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfcoll2
StepHypRef Expression
1 df-coll 44220 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
2 imasng 6113 . . . 4 (𝑥𝐴 → (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦})
32scotteqd 44206 . . 3 (𝑥𝐴 → Scott (𝐹 “ {𝑥}) = Scott {𝑦𝑥𝐹𝑦})
43iuneq2i 5036 . 2 𝑥𝐴 Scott (𝐹 “ {𝑥}) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
51, 4eqtri 2768 1 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {cab 2717  {csn 4648   ciun 5015   class class class wbr 5166  cima 5703  Scott cscott 44204   Coll ccoll 44219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-iun 5017  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-scott 44205  df-coll 44220
This theorem is referenced by:  cpcolld  44227  grucollcld  44229
  Copyright terms: Public domain W3C validator