Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoll2 | Structured version Visualization version GIF version |
Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
dfcoll2 | ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coll 42199 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
2 | imasng 6021 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
3 | 2 | scotteqd 42185 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Scott (𝐹 “ {𝑥}) = Scott {𝑦 ∣ 𝑥𝐹𝑦}) |
4 | 3 | iuneq2i 4962 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
5 | 1, 4 | eqtri 2764 | 1 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 {cab 2713 {csn 4573 ∪ ciun 4941 class class class wbr 5092 “ cima 5623 Scott cscott 42183 Coll ccoll 42198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-iun 4943 df-br 5093 df-opab 5155 df-xp 5626 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-scott 42184 df-coll 42199 |
This theorem is referenced by: cpcolld 42206 grucollcld 42208 |
Copyright terms: Public domain | W3C validator |