Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoll2 Structured version   Visualization version   GIF version

Theorem dfcoll2 44228
Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
dfcoll2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐹
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfcoll2
StepHypRef Expression
1 df-coll 44227 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
2 imasng 6039 . . . 4 (𝑥𝐴 → (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦})
32scotteqd 44213 . . 3 (𝑥𝐴 → Scott (𝐹 “ {𝑥}) = Scott {𝑦𝑥𝐹𝑦})
43iuneq2i 4966 . 2 𝑥𝐴 Scott (𝐹 “ {𝑥}) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
51, 4eqtri 2752 1 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  {csn 4579   ciun 4944   class class class wbr 5095  cima 5626  Scott cscott 44211   Coll ccoll 44226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-iun 4946  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-scott 44212  df-coll 44227
This theorem is referenced by:  cpcolld  44234  grucollcld  44236
  Copyright terms: Public domain W3C validator