![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoll2 | Structured version Visualization version GIF version |
Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
dfcoll2 | ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coll 43962 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
2 | imasng 6085 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
3 | 2 | scotteqd 43948 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Scott (𝐹 “ {𝑥}) = Scott {𝑦 ∣ 𝑥𝐹𝑦}) |
4 | 3 | iuneq2i 5014 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
5 | 1, 4 | eqtri 2754 | 1 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 {cab 2703 {csn 4623 ∪ ciun 4993 class class class wbr 5145 “ cima 5677 Scott cscott 43946 Coll ccoll 43961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-iun 4995 df-br 5146 df-opab 5208 df-xp 5680 df-cnv 5682 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-scott 43947 df-coll 43962 |
This theorem is referenced by: cpcolld 43969 grucollcld 43971 |
Copyright terms: Public domain | W3C validator |