| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoll2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| dfcoll2 | ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coll 44247 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | |
| 2 | imasng 6058 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
| 3 | 2 | scotteqd 44233 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Scott (𝐹 “ {𝑥}) = Scott {𝑦 ∣ 𝑥𝐹𝑦}) |
| 4 | 3 | iuneq2i 4980 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
| 5 | 1, 4 | eqtri 2753 | 1 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 {csn 4592 ∪ ciun 4958 class class class wbr 5110 “ cima 5644 Scott cscott 44231 Coll ccoll 44246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iun 4960 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-scott 44232 df-coll 44247 |
| This theorem is referenced by: cpcolld 44254 grucollcld 44256 |
| Copyright terms: Public domain | W3C validator |