Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval Structured version   Visualization version   GIF version

Theorem cvrval 36397
 Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 30051 analog.) (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   < (𝑧)

Proof of Theorem cvrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvrfval.s . . . . . 6 < = (lt‘𝐾)
3 cvrfval.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrfval 36396 . . . . 5 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
5 3anass 1090 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
65opabbii 5124 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}
74, 6syl6eq 2870 . . . 4 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
87breqd 5068 . . 3 (𝐾𝐴 → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
983ad2ant1 1128 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
10 df-br 5058 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
11 breq1 5060 . . . . . 6 (𝑥 = 𝑋 → (𝑥 < 𝑦𝑋 < 𝑦))
12 breq1 5060 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 < 𝑧𝑋 < 𝑧))
1312anbi1d 631 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑥 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑦)))
1413rexbidv 3295 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1514notbid 320 . . . . . 6 (𝑥 = 𝑋 → (¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1611, 15anbi12d 632 . . . . 5 (𝑥 = 𝑋 → ((𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦))))
17 breq2 5061 . . . . . 6 (𝑦 = 𝑌 → (𝑋 < 𝑦𝑋 < 𝑌))
18 breq2 5061 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑧 < 𝑦𝑧 < 𝑌))
1918anbi2d 630 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
2019rexbidv 3295 . . . . . . 7 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120notbid 320 . . . . . 6 (𝑦 = 𝑌 → (¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2217, 21anbi12d 632 . . . . 5 (𝑦 = 𝑌 → ((𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2316, 22opelopab2 5419 . . . 4 ((𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2410, 23syl5bb 285 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
25243adant1 1125 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
269, 25bitrd 281 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1082   = wceq 1531   ∈ wcel 2108  ∃wrex 3137  ⟨cop 4565   class class class wbr 5057  {copab 5119  ‘cfv 6348  Basecbs 16475  ltcplt 17543   ⋖ ccvr 36390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-covers 36394 This theorem is referenced by:  cvrlt  36398  cvrnbtwn  36399  cvrval2  36402  cvrcon3b  36405  lautcvr  37220
 Copyright terms: Public domain W3C validator