| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvrfval.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | cvrfval.s | . . . . . 6
⊢  < =
(lt‘𝐾) | 
| 3 |  | cvrfval.c | . . . . . 6
⊢ 𝐶 = ( ⋖ ‘𝐾) | 
| 4 | 1, 2, 3 | cvrfval 39270 | . . . . 5
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) | 
| 5 |  | 3anass 1094 | . . . . . 6
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))) | 
| 6 | 5 | opabbii 5209 | . . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))} | 
| 7 | 4, 6 | eqtrdi 2792 | . . . 4
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}) | 
| 8 | 7 | breqd 5153 | . . 3
⊢ (𝐾 ∈ 𝐴 → (𝑋𝐶𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌)) | 
| 9 | 8 | 3ad2ant1 1133 | . 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌)) | 
| 10 |  | df-br 5143 | . . . 4
⊢ (𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}) | 
| 11 |  | breq1 5145 | . . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 < 𝑦 ↔ 𝑋 < 𝑦)) | 
| 12 |  | breq1 5145 | . . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 < 𝑧 ↔ 𝑋 < 𝑧)) | 
| 13 | 12 | anbi1d 631 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑥 < 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝑋 < 𝑧 ∧ 𝑧 < 𝑦))) | 
| 14 | 13 | rexbidv 3178 | . . . . . . 7
⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦))) | 
| 15 | 14 | notbid 318 | . . . . . 6
⊢ (𝑥 = 𝑋 → (¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦))) | 
| 16 | 11, 15 | anbi12d 632 | . . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) ↔ (𝑋 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦)))) | 
| 17 |  | breq2 5146 | . . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 < 𝑦 ↔ 𝑋 < 𝑌)) | 
| 18 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑧 < 𝑦 ↔ 𝑧 < 𝑌)) | 
| 19 | 18 | anbi2d 630 | . . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝑋 < 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌))) | 
| 20 | 19 | rexbidv 3178 | . . . . . . 7
⊢ (𝑦 = 𝑌 → (∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌))) | 
| 21 | 20 | notbid 318 | . . . . . 6
⊢ (𝑦 = 𝑌 → (¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌))) | 
| 22 | 17, 21 | anbi12d 632 | . . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) | 
| 23 | 16, 22 | opelopab2 5545 | . . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))} ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) | 
| 24 | 10, 23 | bitrid 283 | . . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) | 
| 25 | 24 | 3adant1 1130 | . 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) | 
| 26 | 9, 25 | bitrd 279 | 1
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |