Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval Structured version   Visualization version   GIF version

Theorem cvrval 39269
Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 32218 analog.) (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   < (𝑧)

Proof of Theorem cvrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvrfval.s . . . . . 6 < = (lt‘𝐾)
3 cvrfval.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrfval 39268 . . . . 5 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
5 3anass 1094 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
65opabbii 5177 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}
74, 6eqtrdi 2781 . . . 4 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
87breqd 5121 . . 3 (𝐾𝐴 → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
983ad2ant1 1133 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
10 df-br 5111 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
11 breq1 5113 . . . . . 6 (𝑥 = 𝑋 → (𝑥 < 𝑦𝑋 < 𝑦))
12 breq1 5113 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 < 𝑧𝑋 < 𝑧))
1312anbi1d 631 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑥 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑦)))
1413rexbidv 3158 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1514notbid 318 . . . . . 6 (𝑥 = 𝑋 → (¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1611, 15anbi12d 632 . . . . 5 (𝑥 = 𝑋 → ((𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦))))
17 breq2 5114 . . . . . 6 (𝑦 = 𝑌 → (𝑋 < 𝑦𝑋 < 𝑌))
18 breq2 5114 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑧 < 𝑦𝑧 < 𝑌))
1918anbi2d 630 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
2019rexbidv 3158 . . . . . . 7 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120notbid 318 . . . . . 6 (𝑦 = 𝑌 → (¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2217, 21anbi12d 632 . . . . 5 (𝑦 = 𝑌 → ((𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2316, 22opelopab2 5504 . . . 4 ((𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2410, 23bitrid 283 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
25243adant1 1130 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
269, 25bitrd 279 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cop 4598   class class class wbr 5110  {copab 5172  cfv 6514  Basecbs 17186  ltcplt 18276  ccvr 39262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-covers 39266
This theorem is referenced by:  cvrlt  39270  cvrnbtwn  39271  cvrval2  39274  cvrcon3b  39277  lautcvr  40093
  Copyright terms: Public domain W3C validator