Step | Hyp | Ref
| Expression |
1 | | cvrfval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
2 | | cvrfval.s |
. . . . . 6
⊢ < =
(lt‘𝐾) |
3 | | cvrfval.c |
. . . . . 6
⊢ 𝐶 = ( ⋖ ‘𝐾) |
4 | 1, 2, 3 | cvrfval 37776 |
. . . . 5
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) |
5 | | 3anass 1096 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))) |
6 | 5 | opabbii 5173 |
. . . . 5
⊢
{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))} |
7 | 4, 6 | eqtrdi 2789 |
. . . 4
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}) |
8 | 7 | breqd 5117 |
. . 3
⊢ (𝐾 ∈ 𝐴 → (𝑋𝐶𝑌 ↔ 𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌)) |
9 | 8 | 3ad2ant1 1134 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌)) |
10 | | df-br 5107 |
. . . 4
⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}) |
11 | | breq1 5109 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 < 𝑦 ↔ 𝑋 < 𝑦)) |
12 | | breq1 5109 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 < 𝑧 ↔ 𝑋 < 𝑧)) |
13 | 12 | anbi1d 631 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑥 < 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝑋 < 𝑧 ∧ 𝑧 < 𝑦))) |
14 | 13 | rexbidv 3172 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦))) |
15 | 14 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦))) |
16 | 11, 15 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) ↔ (𝑋 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦)))) |
17 | | breq2 5110 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 < 𝑦 ↔ 𝑋 < 𝑌)) |
18 | | breq2 5110 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑧 < 𝑦 ↔ 𝑧 < 𝑌)) |
19 | 18 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝑋 < 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝑋 < 𝑧 ∧ 𝑧 < 𝑌))) |
20 | 19 | rexbidv 3172 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌))) |
21 | 20 | notbid 318 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦) ↔ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌))) |
22 | 17, 21 | anbi12d 632 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑦)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
23 | 16, 22 | opelopab2 5499 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))} ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
24 | 10, 23 | bitrid 283 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
25 | 24 | 3adant1 1131 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
26 | 9, 25 | bitrd 279 |
1
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |