Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval Structured version   Visualization version   GIF version

Theorem cvrval 35290
Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 29666 analog.) (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   < (𝑧)

Proof of Theorem cvrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvrfval.s . . . . . 6 < = (lt‘𝐾)
3 cvrfval.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrfval 35289 . . . . 5 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
5 3anass 1117 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
65opabbii 4910 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}
74, 6syl6eq 2849 . . . 4 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
87breqd 4854 . . 3 (𝐾𝐴 → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
983ad2ant1 1164 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
10 df-br 4844 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
11 breq1 4846 . . . . . 6 (𝑥 = 𝑋 → (𝑥 < 𝑦𝑋 < 𝑦))
12 breq1 4846 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 < 𝑧𝑋 < 𝑧))
1312anbi1d 624 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑥 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑦)))
1413rexbidv 3233 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1514notbid 310 . . . . . 6 (𝑥 = 𝑋 → (¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1611, 15anbi12d 625 . . . . 5 (𝑥 = 𝑋 → ((𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦))))
17 breq2 4847 . . . . . 6 (𝑦 = 𝑌 → (𝑋 < 𝑦𝑋 < 𝑌))
18 breq2 4847 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑧 < 𝑦𝑧 < 𝑌))
1918anbi2d 623 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
2019rexbidv 3233 . . . . . . 7 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120notbid 310 . . . . . 6 (𝑦 = 𝑌 → (¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2217, 21anbi12d 625 . . . . 5 (𝑦 = 𝑌 → ((𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2316, 22opelopab2 5192 . . . 4 ((𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2410, 23syl5bb 275 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
25243adant1 1161 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
269, 25bitrd 271 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wrex 3090  cop 4374   class class class wbr 4843  {copab 4905  cfv 6101  Basecbs 16184  ltcplt 17256  ccvr 35283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fv 6109  df-covers 35287
This theorem is referenced by:  cvrlt  35291  cvrnbtwn  35292  cvrval2  35295  cvrcon3b  35298  lautcvr  36113
  Copyright terms: Public domain W3C validator