![]() |
Metamath
Proof Explorer Theorem List (p. 385 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | islpln5 38401* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π)))) | ||
Theorem | islpln2 38402* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ (πΎ β HL β (π β π β (π β π΅ β§ βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π))))) | ||
Theorem | lplni2 38403 | The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π ))) β ((π β¨ π ) β¨ π) β π) | ||
Theorem | lvolex3N 38404* | There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π) β βπ β π΄ Β¬ π β€ π) | ||
Theorem | llnmlplnN 38405 | The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ (Β¬ π β€ π β§ (π β§ π) β 0 )) β (π β§ π) β π΄) | ||
Theorem | lplnle 38406* | Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π΅) β§ (π β 0 β§ Β¬ π β π΄ β§ Β¬ π β π)) β βπ¦ β π π¦ β€ π) | ||
Theorem | lplnnle2at 38407 | A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π΄ β§ π β π΄)) β Β¬ π β€ (π β¨ π )) | ||
Theorem | lplnnleat 38408 | A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π΄) β Β¬ π β€ π) | ||
Theorem | lplnnlelln 38409 | A lattice plane is not less than or equal to a lattice line. (Contributed by NM, 14-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π β€ π) | ||
Theorem | 2atnelpln 38410 | The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β Β¬ (π β¨ π ) β π) | ||
Theorem | lplnneat 38411 | No lattice plane is an atom. (Contributed by NM, 15-Jul-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π) β Β¬ π β π΄) | ||
Theorem | lplnnelln 38412 | No lattice plane is a lattice line. (Contributed by NM, 19-Jun-2012.) |
β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π) β Β¬ π β π) | ||
Theorem | lplnn0N 38413 | A lattice plane is nonzero. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.) |
β’ 0 = (0.βπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π) β π β 0 ) | ||
Theorem | islpln2a 38414 | The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (((π β¨ π ) β¨ π) β π β (π β π β§ Β¬ π β€ (π β¨ π )))) | ||
Theorem | islpln2ah 38415 | The predicate "is a lattice plane" for join of atoms. Version of islpln2a 38414 expressed with an abbreviation hypothesis. (Contributed by NM, 30-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π β π β (π β π β§ Β¬ π β€ (π β¨ π )))) | ||
Theorem | lplnriaN 38416 | Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β Β¬ π β€ (π β¨ π)) | ||
Theorem | lplnribN 38417 | Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β Β¬ π β€ (π β¨ π)) | ||
Theorem | lplnric 38418 | Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β Β¬ π β€ (π β¨ π )) | ||
Theorem | lplnri1 38419 | Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β π β π ) | ||
Theorem | lplnri2N 38420 | Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β π β π) | ||
Theorem | lplnri3N 38421 | Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β π β π) | ||
Theorem | lplnllnneN 38422 | Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = ((π β¨ π ) β¨ π) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β (π β¨ π)) | ||
Theorem | llncvrlpln2 38423 | A lattice line under a lattice plane is covered by it. (Contributed by NM, 24-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β ππΆπ) | ||
Theorem | llncvrlpln 38424 | An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ ππΆπ) β (π β π β π β π)) | ||
Theorem | 2lplnmN 38425 | If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ ππΆ(π β¨ π)) β (π β§ π) β π) | ||
Theorem | 2llnmj 38426 | The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.) |
β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β ((π β§ π) β π΄ β (π β¨ π) β π)) | ||
Theorem | 2atmat 38427 | The meet of two intersecting lines (expressed as joins of atoms) is an atom. (Contributed by NM, 21-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π β€ ((π β¨ π) β¨ π ))) β ((π β¨ π) β§ (π β¨ π)) β π΄) | ||
Theorem | lplncmp 38428 | If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β (π β€ π β π = π)) | ||
Theorem | lplnexatN 38429* | Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β βπ β π΄ (Β¬ π β€ π β§ π = (π β¨ π))) | ||
Theorem | lplnexllnN 38430* | Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ π β€ π) β βπ¦ β π (Β¬ π β€ π¦ β§ π = (π¦ β¨ π))) | ||
Theorem | lplnnlt 38431 | Two lattice planes cannot satisfy the less than relation. (Contributed by NM, 7-Jul-2012.) |
β’ < = (ltβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π < π) | ||
Theorem | 2llnjaN 38432 | The join of two different lattice lines in a lattice plane equals the plane (version of 2llnjN 38433 in terms of atoms). (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((((πΎ β HL β§ π β π) β§ (π β π΄ β§ π β π΄ β§ π β π ) β§ (π β π΄ β§ π β π΄ β§ π β π)) β§ ((π β¨ π ) β€ π β§ (π β¨ π) β€ π β§ (π β¨ π ) β (π β¨ π))) β ((π β¨ π ) β¨ (π β¨ π)) = π) | ||
Theorem | 2llnjN 38433 | The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β (π β¨ π) = π) | ||
Theorem | 2llnm2N 38434 | The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β (π β§ π) β π΄) | ||
Theorem | 2llnm3N 38435 | Two lattice lines in a lattice plane always meet. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π)) β (π β§ π) β 0 ) | ||
Theorem | 2llnm4 38436 | Two lattice lines that majorize the same atom always meet. (Contributed by NM, 20-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π)) β (π β§ π) β 0 ) | ||
Theorem | 2llnmeqat 38437 | An atom equals the intersection of two majorizing lines. (Contributed by NM, 3-Apr-2013.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π΄) β§ (π β π β§ π β€ (π β§ π))) β π = (π β§ π)) | ||
Theorem | lvolset 38438* | The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ (πΎ β π΄ β π = {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯}) | ||
Theorem | islvol 38439* | The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) | ||
Theorem | islvol4 38440* | The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β π΄ β§ π β π΅) β (π β π β βπ¦ β π π¦πΆπ)) | ||
Theorem | lvoli 38441 | Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π) | ||
Theorem | islvol3 38442* | The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ¦ β π βπ β π΄ (Β¬ π β€ π¦ β§ π = (π¦ β¨ π)))) | ||
Theorem | lvoli3 38443 | Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ Β¬ π β€ π) β (π β¨ π) β π) | ||
Theorem | lvolbase 38444 | A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π = (LVolsβπΎ) β β’ (π β π β π β π΅) | ||
Theorem | islvol5 38445* | The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ β π΄ βπ β π΄ βπ β π΄ βπ β π΄ ((π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ π = (((π β¨ π) β¨ π) β¨ π )))) | ||
Theorem | islvol2 38446* | The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ (πΎ β HL β (π β π β (π β π΅ β§ βπ β π΄ βπ β π΄ βπ β π΄ βπ β π΄ ((π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ π = (((π β¨ π) β¨ π) β¨ π ))))) | ||
Theorem | lvoli2 38447 | The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (((π β¨ π) β¨ π ) β¨ π) β π) | ||
Theorem | lvolnle3at 38448 | A lattice plane (or lattice line or atom) cannot majorize a lattice volume. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ (((πΎ β HL β§ π β π) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β Β¬ π β€ ((π β¨ π) β¨ π )) | ||
Theorem | lvolnleat 38449 | An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π΄) β Β¬ π β€ π) | ||
Theorem | lvolnlelln 38450 | A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π β€ π) | ||
Theorem | lvolnlelpln 38451 | A lattice plane cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π β€ π) | ||
Theorem | 3atnelvolN 38452 | The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β Β¬ ((π β¨ π) β¨ π ) β π) | ||
Theorem | 2atnelvolN 38453 | The join of two atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β Β¬ (π β¨ π) β π) | ||
Theorem | lvolneatN 38454 | No lattice volume is an atom. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π) β Β¬ π β π΄) | ||
Theorem | lvolnelln 38455 | No lattice volume is a lattice line. (Contributed by NM, 15-Jul-2012.) |
β’ π = (LLinesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π) β Β¬ π β π) | ||
Theorem | lvolnelpln 38456 | No lattice volume is a lattice plane. (Contributed by NM, 19-Jun-2012.) |
β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π) β Β¬ π β π) | ||
Theorem | lvoln0N 38457 | A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
β’ 0 = (0.βπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π) β π β 0 ) | ||
Theorem | islvol2aN 38458 | The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((((π β¨ π) β¨ π ) β¨ π) β π β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π )))) | ||
Theorem | 4atlem0a 38459 | Lemma for 4at 38479. (Contributed by NM, 10-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β Β¬ π β€ ((π β¨ π) β¨ π)) | ||
Theorem | 4atlem0ae 38460 | Lemma for 4at 38479. (Contributed by NM, 10-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π )) | ||
Theorem | 4atlem0be 38461 | Lemma for 4at 38479. (Contributed by NM, 10-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ (π β¨ π)) β π β π ) | ||
Theorem | 4atlem3 38462 | Lemma for 4at 38479. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β ((Β¬ π β€ ((π β¨ π) β¨ π) β¨ Β¬ π β€ ((π β¨ π) β¨ π)) β¨ (Β¬ π β€ ((π β¨ π) β¨ π) β¨ Β¬ π β€ ((π β¨ π) β¨ π)))) | ||
Theorem | 4atlem3a 38463 | Lemma for 4at 38479. Break inequality into 3 cases. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (Β¬ π β€ ((π β¨ π) β¨ π) β¨ Β¬ π β€ ((π β¨ π) β¨ π) β¨ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 4atlem3b 38464 | Lemma for 4at 38479. Break inequality into 2 cases. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (Β¬ π β€ ((π β¨ π) β¨ π) β¨ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 4atlem4a 38465 | Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ (π β¨ π)) = (π β¨ ((π β¨ π ) β¨ π))) | ||
Theorem | 4atlem4b 38466 | Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ (π β¨ π)) = (π β¨ ((π β¨ π ) β¨ π))) | ||
Theorem | 4atlem4c 38467 | Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ (π β¨ π)) = (π β¨ ((π β¨ π) β¨ π))) | ||
Theorem | 4atlem4d 38468 | Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ (π β¨ π)) = (π β¨ ((π β¨ π) β¨ π ))) | ||
Theorem | 4atlem9 38469 | Lemma for 4at 38479. Substitute π for π. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ ((π β¨ π) β¨ π )) β (π β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4atlem10a 38470 | Lemma for 4at 38479. Substitute π for π . (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β (π β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4atlem10b 38471 | Lemma for 4at 38479. Substitute π for π (cont.). (Contributed by NM, 10-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ Β¬ π β€ ((π β¨ π) β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β§ (π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π)))) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) | ||
Theorem | 4atlem10 38472 | Lemma for 4at 38479. Combine both possible cases. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ ((π β π΄ β§ π β π΄) β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β ((π β¨ π) β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4atlem11a 38473 | Lemma for 4at 38479. Substitute π for π. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β (π β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4atlem11b 38474 | Lemma for 4at 38479. Substitute π for π (cont.). (Contributed by NM, 10-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π )) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ (π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π)))) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) | ||
Theorem | 4atlem11 38475 | Lemma for 4at 38479. Combine all three possible cases. (Contributed by NM, 10-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β ((π β¨ (π β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4atlem12a 38476 | Lemma for 4at 38479. Substitute π for π. (Contributed by NM, 9-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β (π β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4atlem12b 38477 | Lemma for 4at 38479. Substitute π for π (cont.). (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ ((π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π )) β§ Β¬ π β€ ((π β¨ π) β¨ π)) β§ ((π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))) β§ (π β€ ((π β¨ π) β¨ (π β¨ π)) β§ π β€ ((π β¨ π) β¨ (π β¨ π))))) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π))) | ||
Theorem | 4atlem12 38478 | Lemma for 4at 38479. Combine all four possible cases. (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (((π β¨ π) β¨ (π β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4at 38479 | Four atoms determine a lattice volume uniquely. Three-dimensional analogue of ps-1 38343 and 3at 38356. (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (((π β¨ π) β¨ (π β¨ π)) β€ ((π β¨ π) β¨ (π β¨ π)) β ((π β¨ π) β¨ (π β¨ π)) = ((π β¨ π) β¨ (π β¨ π)))) | ||
Theorem | 4at2 38480 | Four atoms determine a lattice volume uniquely. (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β ((((π β¨ π) β¨ π ) β¨ π) β€ (((π β¨ π) β¨ π) β¨ π) β (((π β¨ π) β¨ π ) β¨ π) = (((π β¨ π) β¨ π) β¨ π))) | ||
Theorem | lplncvrlvol2 38481 | A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β ππΆπ) | ||
Theorem | lplncvrlvol 38482 | An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ ππΆπ) β (π β π β π β π)) | ||
Theorem | lvolcmp 38483 | If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β (π β€ π β π = π)) | ||
Theorem | lvolnltN 38484 | Two lattice volumes cannot satisfy the less than relation. (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
β’ < = (ltβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π < π) | ||
Theorem | 2lplnja 38485 | The join of two different lattice planes in a lattice volume equals the volume (version of 2lplnj 38486 in terms of atoms). (Contributed by NM, 12-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LVolsβπΎ) β β’ ((((πΎ β HL β§ π β π) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β§ ((π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β§ (((π β¨ π) β¨ π ) β€ π β§ ((π β¨ π) β¨ π) β€ π β§ ((π β¨ π) β¨ π ) β ((π β¨ π) β¨ π))) β (((π β¨ π) β¨ π ) β¨ ((π β¨ π) β¨ π)) = π) | ||
Theorem | 2lplnj 38486 | The join of two different lattice planes in a (3-dimensional) lattice volume equals the volume. (Contributed by NM, 12-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β (π β¨ π) = π) | ||
Theorem | 2lplnm2N 38487 | The meet of two different lattice planes in a lattice volume is a lattice line. (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β (π β§ π) β π) | ||
Theorem | 2lplnmj 38488 | The meet of two lattice planes is a lattice line iff their join is a lattice volume. (Contributed by NM, 13-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) & β’ π = (LVolsβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β ((π β§ π) β π β (π β¨ π) β π)) | ||
Theorem | dalemkehl 38489 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β πΎ β HL) | ||
Theorem | dalemkelat 38490 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β πΎ β Lat) | ||
Theorem | dalemkeop 38491 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β πΎ β OP) | ||
Theorem | dalempea 38492 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π΄) | ||
Theorem | dalemqea 38493 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π΄) | ||
Theorem | dalemrea 38494 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π΄) | ||
Theorem | dalemsea 38495 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π΄) | ||
Theorem | dalemtea 38496 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π΄) | ||
Theorem | dalemuea 38497 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π΄) | ||
Theorem | dalemyeo 38498 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π) | ||
Theorem | dalemzeo 38499 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β π β π) | ||
Theorem | dalemclpjs 38500 | Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) β β’ (π β πΆ β€ (π β¨ π)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |