HomeHome Metamath Proof Explorer
Theorem List (p. 385 of 482)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30715)
  Hilbert Space Explorer  Hilbert Space Explorer
(30716-32238)
  Users' Mathboxes  Users' Mathboxes
(32239-48161)
 

Theorem List for Metamath Proof Explorer - 38401-38500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlsatlspsn2 38401 The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 38402 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 β‰  0 ) β†’ (π‘β€˜{𝑋}) ∈ 𝐴)
 
Theoremlsatlspsn 38402 The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))    β‡’   (πœ‘ β†’ (π‘β€˜{𝑋}) ∈ 𝐴)
 
Theoremislsati 38403* A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    β‡’   ((π‘Š ∈ 𝑋 ∧ π‘ˆ ∈ 𝐴) β†’ βˆƒπ‘£ ∈ 𝑉 π‘ˆ = (π‘β€˜{𝑣}))
 
Theoremlsateln0 38404* A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐴)    β‡’   (πœ‘ β†’ βˆƒπ‘£ ∈ π‘ˆ 𝑣 β‰  0 )
 
Theoremlsatlss 38405 The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑆 = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    β‡’   (π‘Š ∈ LMod β†’ 𝐴 βŠ† 𝑆)
 
Theoremlsatlssel 38406 An atom is a subspace. (Contributed by NM, 25-Aug-2014.)
𝑆 = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐴)    β‡’   (πœ‘ β†’ π‘ˆ ∈ 𝑆)
 
Theoremlsatssv 38407 An atom is a set of vectors. (Contributed by NM, 27-Feb-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ 𝑄 βŠ† 𝑉)
 
Theoremlsatn0 38408 A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 32142 analog.) (Contributed by NM, 25-Aug-2014.)
0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐴)    β‡’   (πœ‘ β†’ π‘ˆ β‰  { 0 })
 
Theoremlsatspn0 38409 The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ ((π‘β€˜{𝑋}) ∈ 𝐴 ↔ 𝑋 β‰  0 ))
 
Theoremlsator0sp 38410 The span of a vector is either an atom or the zero subspace. (Contributed by NM, 15-Mar-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ ((π‘β€˜{𝑋}) ∈ 𝐴 ∨ (π‘β€˜{𝑋}) = { 0 }))
 
Theoremlsatssn0 38411 A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015.)
0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 βŠ† π‘ˆ)    β‡’   (πœ‘ β†’ π‘ˆ β‰  { 0 })
 
Theoremlsatcmp 38412 If two atoms are comparable, they are equal. (atsseq 32144 analog.) TODO: can lspsncmp 20993 shorten this? (Contributed by NM, 25-Aug-2014.)
𝐴 = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑇 ∈ 𝐴)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑇 βŠ† π‘ˆ ↔ 𝑇 = π‘ˆ))
 
Theoremlsatcmp2 38413 If an atom is included in at-most an atom, they are equal. More general version of lsatcmp 38412. TODO: can lspsncmp 20993 shorten this? (Contributed by NM, 3-Feb-2015.)
0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑇 ∈ 𝐴)    &   (πœ‘ β†’ (π‘ˆ ∈ 𝐴 ∨ π‘ˆ = { 0 }))    β‡’   (πœ‘ β†’ (𝑇 βŠ† π‘ˆ ↔ 𝑇 = π‘ˆ))
 
Theoremlsatel 38414 A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.)
0 = (0gβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐴)    &   (πœ‘ β†’ 𝑋 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑋 β‰  0 )    β‡’   (πœ‘ β†’ π‘ˆ = (π‘β€˜{𝑋}))
 
TheoremlsatelbN 38415 A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015.) (New usage is discouraged.)
𝑉 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))    &   (πœ‘ β†’ π‘ˆ ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑋 ∈ π‘ˆ ↔ π‘ˆ = (π‘β€˜{𝑋})))
 
Theoremlsat2el 38416 Two atoms sharing a nonzero vector are equal. (Contributed by NM, 8-Mar-2015.)
0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑋 β‰  0 )    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 ∈ 𝑄)    β‡’   (πœ‘ β†’ 𝑃 = 𝑄)
 
Theoremlsmsat 38417* Convert comparison of atom with sum of subspaces to a comparison to sum with atom. (elpaddatiN 39215 analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑇 β‰  { 0 })    &   (πœ‘ β†’ 𝑄 βŠ† (𝑇 βŠ• π‘ˆ))    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 βŠ† 𝑇 ∧ 𝑄 βŠ† (𝑝 βŠ• π‘ˆ)))
 
TheoremlsatfixedN 38418* Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 21005. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &   (πœ‘ β†’ 𝑄 β‰  (π‘β€˜{𝑋}))    &   (πœ‘ β†’ 𝑄 β‰  (π‘β€˜{π‘Œ}))    &   (πœ‘ β†’ 𝑄 βŠ† (π‘β€˜{𝑋, π‘Œ}))    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ ((π‘β€˜{π‘Œ}) βˆ– { 0 })𝑄 = (π‘β€˜{(𝑋 + 𝑧)}))
 
Theoremlsmsatcv 38419 Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31449 analog.) Explicit atom version of lsmcv 21018. (Contributed by NM, 29-Oct-2014.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   ((πœ‘ ∧ 𝑇 ⊊ π‘ˆ ∧ π‘ˆ βŠ† (𝑇 βŠ• 𝑄)) β†’ π‘ˆ = (𝑇 βŠ• 𝑄))
 
Theoremlssatomic 38420* The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 32155 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ β‰  { 0 })    β‡’   (πœ‘ β†’ βˆƒπ‘ž ∈ 𝐴 π‘ž βŠ† π‘ˆ)
 
Theoremlssats 38421* The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 32158 analog.) (Contributed by NM, 9-Apr-2014.)
𝑆 = (LSubSpβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆) β†’ π‘ˆ = (π‘β€˜βˆͺ {π‘₯ ∈ 𝐴 ∣ π‘₯ βŠ† π‘ˆ}))
 
Theoremlpssat 38422* Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 32160 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑇 ⊊ π‘ˆ)    β‡’   (πœ‘ β†’ βˆƒπ‘ž ∈ 𝐴 (π‘ž βŠ† π‘ˆ ∧ Β¬ π‘ž βŠ† 𝑇))
 
Theoremlrelat 38423* Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 32161 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑇 ⊊ π‘ˆ)    β‡’   (πœ‘ β†’ βˆƒπ‘ž ∈ 𝐴 (𝑇 ⊊ (𝑇 βŠ• π‘ž) ∧ (𝑇 βŠ• π‘ž) βŠ† π‘ˆ))
 
Theoremlssatle 38424* The ordering of two subspaces is determined by the atoms under them. (chrelat3 32168 analog.) (Contributed by NM, 29-Oct-2014.)
𝑆 = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    β‡’   (πœ‘ β†’ (𝑇 βŠ† π‘ˆ ↔ βˆ€π‘ ∈ 𝐴 (𝑝 βŠ† 𝑇 β†’ 𝑝 βŠ† π‘ˆ)))
 
Theoremlssat 38425* Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 32160 analog.) (Contributed by NM, 9-Apr-2014.)
𝑆 = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    β‡’   (((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ π‘ˆ ⊊ 𝑉) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 βŠ† 𝑉 ∧ Β¬ 𝑝 βŠ† π‘ˆ))
 
Theoremislshpat 38426* Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 38389. (Contributed by NM, 11-Jan-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π» = (LSHypβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    β‡’   (πœ‘ β†’ (π‘ˆ ∈ 𝐻 ↔ (π‘ˆ ∈ 𝑆 ∧ π‘ˆ β‰  𝑉 ∧ βˆƒπ‘ž ∈ 𝐴 (π‘ˆ βŠ• π‘ž) = 𝑉)))
 
Syntaxclcv 38427 Extend class notation with the covering relation for a left module or left vector space.
class β‹–L
 
Definitiondf-lcv 38428* Define the covering relation for subspaces of a left vector space. Similar to Definition 3.2.18 of [PtakPulmannova] p. 68. Ptak/Pulmannova's notation 𝐴( β‹–L β€˜π‘Š)𝐡 is read "𝐡 covers 𝐴 " or "𝐴 is covered by 𝐡 " , and it means that 𝐡 is larger than 𝐴 and there is nothing in between. See lcvbr 38430 for binary relation. (df-cv 32076 analog.) (Contributed by NM, 7-Jan-2015.)
β‹–L = (𝑀 ∈ V ↦ {βŸ¨π‘‘, π‘’βŸ© ∣ ((𝑑 ∈ (LSubSpβ€˜π‘€) ∧ 𝑒 ∈ (LSubSpβ€˜π‘€)) ∧ (𝑑 ⊊ 𝑒 ∧ Β¬ βˆƒπ‘  ∈ (LSubSpβ€˜π‘€)(𝑑 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑒)))})
 
Theoremlcvfbr 38429* The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    β‡’   (πœ‘ β†’ 𝐢 = {βŸ¨π‘‘, π‘’βŸ© ∣ ((𝑑 ∈ 𝑆 ∧ 𝑒 ∈ 𝑆) ∧ (𝑑 ⊊ 𝑒 ∧ Β¬ βˆƒπ‘  ∈ 𝑆 (𝑑 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑒)))})
 
Theoremlcvbr 38430* The covers relation for a left vector space (or a left module). (cvbr 32079 analog.) (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    β‡’   (πœ‘ β†’ (π‘‡πΆπ‘ˆ ↔ (𝑇 ⊊ π‘ˆ ∧ Β¬ βˆƒπ‘  ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ π‘ˆ))))
 
Theoremlcvbr2 38431* The covers relation for a left vector space (or a left module). (cvbr2 32080 analog.) (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    β‡’   (πœ‘ β†’ (π‘‡πΆπ‘ˆ ↔ (𝑇 ⊊ π‘ˆ ∧ βˆ€π‘  ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 βŠ† π‘ˆ) β†’ 𝑠 = π‘ˆ))))
 
Theoremlcvbr3 38432* The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    β‡’   (πœ‘ β†’ (π‘‡πΆπ‘ˆ ↔ (𝑇 ⊊ π‘ˆ ∧ βˆ€π‘  ∈ 𝑆 ((𝑇 βŠ† 𝑠 ∧ 𝑠 βŠ† π‘ˆ) β†’ (𝑠 = 𝑇 ∨ 𝑠 = π‘ˆ)))))
 
Theoremlcvpss 38433 The covers relation implies proper subset. (cvpss 32082 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ π‘‡πΆπ‘ˆ)    β‡’   (πœ‘ β†’ 𝑇 ⊊ π‘ˆ)
 
Theoremlcvnbtwn 38434 The covers relation implies no in-betweenness. (cvnbtwn 32083 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑅 ∈ 𝑆)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑅𝐢𝑇)    β‡’   (πœ‘ β†’ Β¬ (𝑅 ⊊ π‘ˆ ∧ π‘ˆ ⊊ 𝑇))
 
Theoremlcvntr 38435 The covers relation is not transitive. (cvntr 32089 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑅 ∈ 𝑆)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑅𝐢𝑇)    &   (πœ‘ β†’ π‘‡πΆπ‘ˆ)    β‡’   (πœ‘ β†’ Β¬ π‘…πΆπ‘ˆ)
 
Theoremlcvnbtwn2 38436 The covers relation implies no in-betweenness. (cvnbtwn2 32084 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑅 ∈ 𝑆)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑅𝐢𝑇)    &   (πœ‘ β†’ 𝑅 ⊊ π‘ˆ)    &   (πœ‘ β†’ π‘ˆ βŠ† 𝑇)    β‡’   (πœ‘ β†’ π‘ˆ = 𝑇)
 
Theoremlcvnbtwn3 38437 The covers relation implies no in-betweenness. (cvnbtwn3 32085 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    &   (πœ‘ β†’ 𝑅 ∈ 𝑆)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑅𝐢𝑇)    &   (πœ‘ β†’ 𝑅 βŠ† π‘ˆ)    &   (πœ‘ β†’ π‘ˆ ⊊ 𝑇)    β‡’   (πœ‘ β†’ π‘ˆ = 𝑅)
 
Theoremlsmcv2 38438 Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 32090 analog.) (Contributed by NM, 10-Jan-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ Β¬ (π‘β€˜{𝑋}) βŠ† π‘ˆ)    β‡’   (πœ‘ β†’ π‘ˆπΆ(π‘ˆ βŠ• (π‘β€˜{𝑋})))
 
Theoremlcvat 38439* If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 32163 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ π‘‡πΆπ‘ˆ)    β‡’   (πœ‘ β†’ βˆƒπ‘ž ∈ 𝐴 (𝑇 βŠ• π‘ž) = π‘ˆ)
 
Theoremlsatcv0 38440 An atom covers the zero subspace. (atcv0 32139 analog.) (Contributed by NM, 7-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ { 0 }𝐢𝑄)
 
Theoremlsatcveq0 38441 A subspace covered by an atom must be the zero subspace. (atcveq0 32145 analog.) (Contributed by NM, 7-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (π‘ˆπΆπ‘„ ↔ π‘ˆ = { 0 }))
 
Theoremlsat0cv 38442 A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
0 = (0gβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    β‡’   (πœ‘ β†’ (π‘ˆ ∈ 𝐴 ↔ { 0 }πΆπ‘ˆ))
 
Theoremlcvexchlem1 38443 Lemma for lcvexch 38448. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    β‡’   (πœ‘ β†’ (𝑇 ⊊ (𝑇 βŠ• π‘ˆ) ↔ (𝑇 ∩ π‘ˆ) ⊊ π‘ˆ))
 
Theoremlcvexchlem2 38444 Lemma for lcvexch 38448. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑅 ∈ 𝑆)    &   (πœ‘ β†’ (𝑇 ∩ π‘ˆ) βŠ† 𝑅)    &   (πœ‘ β†’ 𝑅 βŠ† π‘ˆ)    β‡’   (πœ‘ β†’ ((𝑅 βŠ• 𝑇) ∩ π‘ˆ) = 𝑅)
 
Theoremlcvexchlem3 38445 Lemma for lcvexch 38448. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑅 ∈ 𝑆)    &   (πœ‘ β†’ 𝑇 βŠ† 𝑅)    &   (πœ‘ β†’ 𝑅 βŠ† (𝑇 βŠ• π‘ˆ))    β‡’   (πœ‘ β†’ ((𝑅 ∩ π‘ˆ) βŠ• 𝑇) = 𝑅)
 
Theoremlcvexchlem4 38446 Lemma for lcvexch 38448. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑇𝐢(𝑇 βŠ• π‘ˆ))    β‡’   (πœ‘ β†’ (𝑇 ∩ π‘ˆ)πΆπ‘ˆ)
 
Theoremlcvexchlem5 38447 Lemma for lcvexch 38448. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ (𝑇 ∩ π‘ˆ)πΆπ‘ˆ)    β‡’   (πœ‘ β†’ 𝑇𝐢(𝑇 βŠ• π‘ˆ))
 
Theoremlcvexch 38448 Subspaces satisfy the exchange axiom. Lemma 7.5 of [MaedaMaeda] p. 31. (cvexchi 32166 analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    β‡’   (πœ‘ β†’ ((𝑇 ∩ π‘ˆ)πΆπ‘ˆ ↔ 𝑇𝐢(𝑇 βŠ• π‘ˆ)))
 
Theoremlcvp 38449 Covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32172 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ ((π‘ˆ ∩ 𝑄) = { 0 } ↔ π‘ˆπΆ(π‘ˆ βŠ• 𝑄)))
 
Theoremlcv1 38450 Covering property of a subspace plus an atom. (chcv1 32152 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (Β¬ 𝑄 βŠ† π‘ˆ ↔ π‘ˆπΆ(π‘ˆ βŠ• 𝑄)))
 
Theoremlcv2 38451 Covering property of a subspace plus an atom. (chcv2 32153 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (π‘ˆ ⊊ (π‘ˆ βŠ• 𝑄) ↔ π‘ˆπΆ(π‘ˆ βŠ• 𝑄)))
 
Theoremlsatexch 38452 The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 32178 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 βŠ† (π‘ˆ βŠ• 𝑅))    &   (πœ‘ β†’ (π‘ˆ ∩ 𝑄) = { 0 })    β‡’   (πœ‘ β†’ 𝑅 βŠ† (π‘ˆ βŠ• 𝑄))
 
Theoremlsatnle 38453 The meet of a subspace and an incomparable atom is the zero subspace. (atnssm0 32173 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (Β¬ 𝑄 βŠ† π‘ˆ ↔ (π‘ˆ ∩ 𝑄) = { 0 }))
 
Theoremlsatnem0 38454 The meet of distinct atoms is the zero subspace. (atnemeq0 32174 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑄 β‰  𝑅 ↔ (𝑄 ∩ 𝑅) = { 0 }))
 
Theoremlsatexch1 38455 The atom exch1ange property. (hlatexch1 38805 analog.) (Contributed by NM, 14-Jan-2015.)
βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ 𝑆 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 βŠ† (𝑆 βŠ• 𝑅))    &   (πœ‘ β†’ 𝑄 β‰  𝑆)    β‡’   (πœ‘ β†’ 𝑅 βŠ† (𝑆 βŠ• 𝑄))
 
Theoremlsatcv0eq 38456 If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 32176 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0gβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    β‡’   (πœ‘ β†’ ({ 0 }𝐢(𝑄 βŠ• 𝑅) ↔ 𝑄 = 𝑅))
 
Theoremlsatcv1 38457 Two atoms covering the zero subspace are equal. (atcv1 32177 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0gβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ π‘ˆπΆ(𝑄 βŠ• 𝑅))    β‡’   (πœ‘ β†’ (π‘ˆ = { 0 } ↔ 𝑄 = 𝑅))
 
Theoremlsatcvatlem 38458 Lemma for lsatcvat 38459. (Contributed by NM, 10-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ π‘ˆ β‰  { 0 })    &   (πœ‘ β†’ π‘ˆ ⊊ (𝑄 βŠ• 𝑅))    &   (πœ‘ β†’ Β¬ 𝑄 βŠ† π‘ˆ)    β‡’   (πœ‘ β†’ π‘ˆ ∈ 𝐴)
 
Theoremlsatcvat 38459 A nonzero subspace less than the sum of two atoms is an atom. (atcvati 32183 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0gβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ π‘ˆ β‰  { 0 })    &   (πœ‘ β†’ π‘ˆ ⊊ (𝑄 βŠ• 𝑅))    β‡’   (πœ‘ β†’ π‘ˆ ∈ 𝐴)
 
Theoremlsatcvat2 38460 A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 32184 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 β‰  𝑅)    &   (πœ‘ β†’ π‘ˆπΆ(𝑄 βŠ• 𝑅))    β‡’   (πœ‘ β†’ π‘ˆ ∈ 𝐴)
 
Theoremlsatcvat3 38461 A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32193 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 β‰  𝑅)    &   (πœ‘ β†’ Β¬ 𝑅 βŠ† π‘ˆ)    &   (πœ‘ β†’ 𝑄 βŠ† (π‘ˆ βŠ• 𝑅))    β‡’   (πœ‘ β†’ (π‘ˆ ∩ (𝑄 βŠ• 𝑅)) ∈ 𝐴)
 
Theoremislshpcv 38462 Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &   π» = (LSHypβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    β‡’   (πœ‘ β†’ (π‘ˆ ∈ 𝐻 ↔ (π‘ˆ ∈ 𝑆 ∧ π‘ˆπΆπ‘‰)))
 
Theoreml1cvpat 38463 A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 38885 analog.) (Contributed by NM, 11-Jan-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ π‘ˆπΆπ‘‰)    &   (πœ‘ β†’ Β¬ 𝑄 βŠ† π‘ˆ)    β‡’   (πœ‘ β†’ (π‘ˆ βŠ• 𝑄) = 𝑉)
 
Theoreml1cvat 38464 Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 38886 analog.) (Contributed by NM, 11-Jan-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   πΆ = ( β‹–L β€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝑆)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 β‰  𝑅)    &   (πœ‘ β†’ π‘ˆπΆπ‘‰)    &   (πœ‘ β†’ Β¬ 𝑄 βŠ† π‘ˆ)    β‡’   (πœ‘ β†’ ((𝑄 βŠ• 𝑅) ∩ π‘ˆ) ∈ 𝐴)
 
Theoremlshpat 38465 Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 39453 analog.) TODO: This changes π‘ˆπΆπ‘‰ in l1cvpat 38463 and l1cvat 38464 to π‘ˆ ∈ 𝐻, which in turn change π‘ˆ ∈ 𝐻 in islshpcv 38462 to π‘ˆπΆπ‘‰, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSpβ€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘Š)    &   π» = (LSHypβ€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LVec)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐻)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 β‰  𝑅)    &   (πœ‘ β†’ Β¬ 𝑄 βŠ† π‘ˆ)    β‡’   (πœ‘ β†’ ((𝑄 βŠ• 𝑅) ∩ π‘ˆ) ∈ 𝐴)
 
21.26.7  Functionals and kernels of a left vector space (or module)
 
Syntaxclfn 38466 Extend class notation with all linear functionals of a left module or left vector space.
class LFnl
 
Definitiondf-lfl 38467* Define the set of all linear functionals (maps from vectors to the ring) of a left module or left vector space. (Contributed by NM, 15-Apr-2014.)
LFnl = (𝑀 ∈ V ↦ {𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m (Baseβ€˜π‘€)) ∣ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)(π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦))})
 
Theoremlflset 38468* The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    ⨣ = (+gβ€˜π·)    &    Γ— = (.rβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   (π‘Š ∈ 𝑋 β†’ 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))})
 
Theoremislfl 38469* The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    ⨣ = (+gβ€˜π·)    &    Γ— = (.rβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   (π‘Š ∈ 𝑋 β†’ (𝐺 ∈ 𝐹 ↔ (𝐺:π‘‰βŸΆπΎ ∧ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (πΊβ€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (πΊβ€˜π‘₯)) ⨣ (πΊβ€˜π‘¦)))))
 
Theoremlfli 38470 Property of a linear functional. (lnfnli 31837 analog.) (Contributed by NM, 16-Apr-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    ⨣ = (+gβ€˜π·)    &    Γ— = (.rβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ 𝑍 ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (πΊβ€˜((𝑅 Β· 𝑋) + π‘Œ)) = ((𝑅 Γ— (πΊβ€˜π‘‹)) ⨣ (πΊβ€˜π‘Œ)))
 
Theoremislfld 38471* Properties that determine a linear functional. TODO: use this in place of islfl 38469 when it shortens the proof. (Contributed by NM, 19-Oct-2014.)
(πœ‘ β†’ 𝑉 = (Baseβ€˜π‘Š))    &   (πœ‘ β†’ + = (+gβ€˜π‘Š))    &   (πœ‘ β†’ 𝐷 = (Scalarβ€˜π‘Š))    &   (πœ‘ β†’ Β· = ( ·𝑠 β€˜π‘Š))    &   (πœ‘ β†’ 𝐾 = (Baseβ€˜π·))    &   (πœ‘ β†’ ⨣ = (+gβ€˜π·))    &   (πœ‘ β†’ Γ— = (.rβ€˜π·))    &   (πœ‘ β†’ 𝐹 = (LFnlβ€˜π‘Š))    &   (πœ‘ β†’ 𝐺:π‘‰βŸΆπΎ)    &   ((πœ‘ ∧ (π‘Ÿ ∈ 𝐾 ∧ π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (πΊβ€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (πΊβ€˜π‘₯)) ⨣ (πΊβ€˜π‘¦)))    &   (πœ‘ β†’ π‘Š ∈ 𝑋)    β‡’   (πœ‘ β†’ 𝐺 ∈ 𝐹)
 
Theoremlflf 38472 A linear functional is a function from vectors to scalars. (lnfnfi 31838 analog.) (Contributed by NM, 15-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &   π‘‰ = (Baseβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) β†’ 𝐺:π‘‰βŸΆπΎ)
 
Theoremlflcl 38473 A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &   π‘‰ = (Baseβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ π‘Œ ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) β†’ (πΊβ€˜π‘‹) ∈ 𝐾)
 
Theoremlfl0 38474 A linear functional is zero at the zero vector. (lnfn0i 31839 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &   π‘ = (0gβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ 𝐺 ∈ 𝐹) β†’ (πΊβ€˜π‘) = 0 )
 
Theoremlfladd 38475 Property of a linear functional. (lnfnaddi 31840 analog.) (Contributed by NM, 18-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &    ⨣ = (+gβ€˜π·)    &   π‘‰ = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (πΊβ€˜(𝑋 + π‘Œ)) = ((πΊβ€˜π‘‹) ⨣ (πΊβ€˜π‘Œ)))
 
Theoremlflsub 38476 Property of a linear functional. (lnfnaddi 31840 analog.) (Contributed by NM, 18-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &   π‘€ = (-gβ€˜π·)    &   π‘‰ = (Baseβ€˜π‘Š)    &    βˆ’ = (-gβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (πΊβ€˜(𝑋 βˆ’ π‘Œ)) = ((πΊβ€˜π‘‹)𝑀(πΊβ€˜π‘Œ)))
 
Theoremlflmul 38477 Property of a linear functional. (lnfnmuli 31841 analog.) (Contributed by NM, 16-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    Γ— = (.rβ€˜π·)    &   π‘‰ = (Baseβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) β†’ (πΊβ€˜(𝑅 Β· 𝑋)) = (𝑅 Γ— (πΊβ€˜π‘‹)))
 
Theoremlfl0f 38478 The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &   π‘‰ = (Baseβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   (π‘Š ∈ LMod β†’ (𝑉 Γ— { 0 }) ∈ 𝐹)
 
Theoremlfl1 38479* A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &    1 = (1rβ€˜π·)    &   π‘‰ = (Baseβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    β‡’   ((π‘Š ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 β‰  (𝑉 Γ— { 0 })) β†’ βˆƒπ‘₯ ∈ 𝑉 (πΊβ€˜π‘₯) = 1 )
 
Theoremlfladdcl 38480 Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.)
𝑅 = (Scalarβ€˜π‘Š)    &    + = (+gβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    &   (πœ‘ β†’ 𝐻 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝐺 ∘f + 𝐻) ∈ 𝐹)
 
Theoremlfladdcom 38481 Commutativity of functional addition. (Contributed by NM, 19-Oct-2014.)
𝑅 = (Scalarβ€˜π‘Š)    &    + = (+gβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    &   (πœ‘ β†’ 𝐻 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝐺 ∘f + 𝐻) = (𝐻 ∘f + 𝐺))
 
Theoremlfladdass 38482 Associativity of functional addition. (Contributed by NM, 19-Oct-2014.)
𝑅 = (Scalarβ€˜π‘Š)    &    + = (+gβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    &   (πœ‘ β†’ 𝐻 ∈ 𝐹)    &   (πœ‘ β†’ 𝐼 ∈ 𝐹)    β‡’   (πœ‘ β†’ ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼)))
 
Theoremlfladd0l 38483 Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘… = (Scalarβ€˜π‘Š)    &    + = (+gβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ ((𝑉 Γ— { 0 }) ∘f + 𝐺) = 𝐺)
 
Theoremlflnegcl 38484* Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 38555, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘… = (Scalarβ€˜π‘Š)    &   πΌ = (invgβ€˜π‘…)    &   π‘ = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯)))    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ 𝑁 ∈ 𝐹)
 
Theoremlflnegl 38485* A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 38555, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘… = (Scalarβ€˜π‘Š)    &   πΌ = (invgβ€˜π‘…)    &   π‘ = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯)))    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    &    + = (+gβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (πœ‘ β†’ (𝑁 ∘f + 𝐺) = (𝑉 Γ— { 0 }))
 
Theoremlflvscl 38486 Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    Β· = (.rβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    &   (πœ‘ β†’ 𝑅 ∈ 𝐾)    β‡’   (πœ‘ β†’ (𝐺 ∘f Β· (𝑉 Γ— {𝑅})) ∈ 𝐹)
 
Theoremlflvsdi1 38487 Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘… = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    &   (πœ‘ β†’ 𝐻 ∈ 𝐹)    β‡’   (πœ‘ β†’ ((𝐺 ∘f + 𝐻) ∘f Β· (𝑉 Γ— {𝑋})) = ((𝐺 ∘f Β· (𝑉 Γ— {𝑋})) ∘f + (𝐻 ∘f Β· (𝑉 Γ— {𝑋}))))
 
Theoremlflvsdi2 38488 Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘… = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ π‘Œ ∈ 𝐾)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝐺 ∘f Β· ((𝑉 Γ— {𝑋}) ∘f + (𝑉 Γ— {π‘Œ}))) = ((𝐺 ∘f Β· (𝑉 Γ— {𝑋})) ∘f + (𝐺 ∘f Β· (𝑉 Γ— {π‘Œ}))))
 
Theoremlflvsdi2a 38489 Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘… = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ π‘Œ ∈ 𝐾)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝐺 ∘f Β· (𝑉 Γ— {(𝑋 + π‘Œ)})) = ((𝐺 ∘f Β· (𝑉 Γ— {𝑋})) ∘f + (𝐺 ∘f Β· (𝑉 Γ— {π‘Œ}))))
 
Theoremlflvsass 38490 Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π‘… = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   πΉ = (LFnlβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    &   (πœ‘ β†’ π‘Œ ∈ 𝐾)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝐺 ∘f Β· (𝑉 Γ— {(𝑋 Β· π‘Œ)})) = ((𝐺 ∘f Β· (𝑉 Γ— {𝑋})) ∘f Β· (𝑉 Γ— {π‘Œ})))
 
Theoremlfl0sc 38491 The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of (𝑉 Γ— { 0 }) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    Β· = (.rβ€˜π·)    &    0 = (0gβ€˜π·)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝐺 ∘f Β· (𝑉 Γ— { 0 })) = (𝑉 Γ— { 0 }))
 
Theoremlflsc0N 38492 The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.)
𝑉 = (Baseβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    Β· = (.rβ€˜π·)    &    0 = (0gβ€˜π·)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝑋 ∈ 𝐾)    β‡’   (πœ‘ β†’ ((𝑉 Γ— { 0 }) ∘f Β· (𝑉 Γ— {𝑋})) = (𝑉 Γ— { 0 }))
 
Theoremlfl1sc 38493 The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘Š)    &   πΎ = (Baseβ€˜π·)    &    Β· = (.rβ€˜π·)    &    1 = (1rβ€˜π·)    &   (πœ‘ β†’ π‘Š ∈ LMod)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝐺 ∘f Β· (𝑉 Γ— { 1 })) = 𝐺)
 
Syntaxclk 38494 Extend class notation with the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space.
class LKer
 
Definitiondf-lkr 38495* Define the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. (Contributed by NM, 15-Apr-2014.)
LKer = (𝑀 ∈ V ↦ (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})))
 
Theoremlkrfval 38496* The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    &   πΎ = (LKerβ€˜π‘Š)    β‡’   (π‘Š ∈ 𝑋 β†’ 𝐾 = (𝑓 ∈ 𝐹 ↦ (◑𝑓 β€œ { 0 })))
 
Theoremlkrval 38497 Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
𝐷 = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    &   πΎ = (LKerβ€˜π‘Š)    β‡’   ((π‘Š ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) β†’ (πΎβ€˜πΊ) = (◑𝐺 β€œ { 0 }))
 
Theoremellkr 38498 Membership in the kernel of a functional. (elnlfn 31725 analog.) (Contributed by NM, 16-Apr-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    &   πΎ = (LKerβ€˜π‘Š)    β‡’   ((π‘Š ∈ π‘Œ ∧ 𝐺 ∈ 𝐹) β†’ (𝑋 ∈ (πΎβ€˜πΊ) ↔ (𝑋 ∈ 𝑉 ∧ (πΊβ€˜π‘‹) = 0 )))
 
Theoremlkrval2 38499* Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    &   πΎ = (LKerβ€˜π‘Š)    β‡’   ((π‘Š ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) β†’ (πΎβ€˜πΊ) = {π‘₯ ∈ 𝑉 ∣ (πΊβ€˜π‘₯) = 0 })
 
Theoremellkr2 38500 Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.)
𝑉 = (Baseβ€˜π‘Š)    &   π· = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π·)    &   πΉ = (LFnlβ€˜π‘Š)    &   πΎ = (LKerβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ π‘Œ)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝑋 ∈ (πΎβ€˜πΊ) ↔ (πΊβ€˜π‘‹) = 0 ))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48161
  Copyright terms: Public domain < Previous  Next >