| Metamath
Proof Explorer Theorem List (p. 385 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brxrn 38401 | Characterize a ternary relation over a range Cartesian product. Together with xrnss3v 38399, this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐶))) | ||
| Theorem | brxrn2 38402* | A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | ||
| Theorem | dfxrn2 38403* | Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
| ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | brxrncnvep 38404 | The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) | ||
| Theorem | dmxrn 38405 | Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) | ||
| Theorem | dmcnvep 38406 | Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) (Revised by Peter Mazsa, 23-Nov-2025.) |
| ⊢ dom ◡ E = (V ∖ {∅}) | ||
| Theorem | dmxrncnvep 38407 | Domain of the range product with converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ dom (𝑅 ⋉ ◡ E ) = (dom 𝑅 ∖ {∅}) | ||
| Theorem | xrneq1 38408 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | ||
| Theorem | xrneq1i 38409 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶) | ||
| Theorem | xrneq1d 38410 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | ||
| Theorem | xrneq2 38411 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) | ||
| Theorem | xrneq2i 38412 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵) | ||
| Theorem | xrneq2d 38413 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) | ||
| Theorem | xrneq12 38414 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | ||
| Theorem | xrneq12i 38415 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) | ||
| Theorem | xrneq12d 38416 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 18-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | ||
| Theorem | elecxrn 38417* | Elementhood in the (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | ||
| Theorem | ecxrn 38418* | The (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) | ||
| Theorem | disjressuc2 38419* | Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) | ||
| Theorem | disjecxrn 38420 | Two ways of saying that (𝑅 ⋉ 𝑆)-cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020.) (Revised by Peter Mazsa, 21-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅))) | ||
| Theorem | disjecxrncnvep 38421 | Two ways of saying that cosets are disjoint, special case of disjecxrn 38420. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) | ||
| Theorem | disjsuc2 38422* | Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | ||
| Theorem | xrninxp 38423* | Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} | ||
| Theorem | xrninxp2 38424* | Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 8-Apr-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} | ||
| Theorem | xrninxpex 38425 | Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) | ||
| Theorem | inxpxrn 38426 | Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.) |
| ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) | ||
| Theorem | br1cnvxrn2 38427* | The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | ||
| Theorem | elec1cnvxrn2 38428* | Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | ||
| Theorem | rnxrn 38429* | Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.) |
| ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | rnxrnres 38430* | Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | rnxrncnvepres 38431* | Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} | ||
| Theorem | rnxrnidres 38432* | Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} | ||
| Theorem | xrnres 38433 | Two ways to express restriction of range Cartesian product, see also xrnres2 38434, xrnres3 38435. (Contributed by Peter Mazsa, 5-Jun-2021.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) | ||
| Theorem | xrnres2 38434 | Two ways to express restriction of range Cartesian product, see also xrnres 38433, xrnres3 38435. (Contributed by Peter Mazsa, 6-Sep-2021.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | ||
| Theorem | xrnres3 38435 | Two ways to express restriction of range Cartesian product, see also xrnres 38433, xrnres2 38434. (Contributed by Peter Mazsa, 28-Mar-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | ||
| Theorem | xrnres4 38436 | Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | ||
| Theorem | xrnresex 38437 | Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) | ||
| Theorem | xrnidresex 38438 | Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V) | ||
| Theorem | xrncnvepresex 38439 | Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | dmxrncnvepres 38440 | Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) = (dom (𝑅 ↾ 𝐴) ∖ {∅}) | ||
| Theorem | eldmxrncnvepres 38441 | Element of the domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) | ||
| Theorem | eldmxrncnvepres2 38442* | Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet 38888 span (𝑅 ⋉ (' E | 𝐴)): a 𝐵 belongs to the domain of the span exactly when 𝐵 is in 𝐴 and has at least one 𝑥 ∈ 𝐵 and 𝑦 with 𝐵𝑅𝑦. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) | ||
| Theorem | eceldmqsxrncnvepres 38443 | An (𝑅 ⋉ (' E | 𝐴))-coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) | ||
| Theorem | eceldmqsxrncnvepres2 38444* | An (𝑅 ⋉ (' E | 𝐴))-coset in its domain quotient. In the pet 38888 span (𝑅 ⋉ (' E | 𝐴)), a block [ B ] lies in the domain quotient exactly when its representative 𝐵 belongs to 𝐴 and actually fires at least one arrow (has some 𝑥 ∈ 𝐵 and some 𝑦 with 𝐵𝑅𝑦). (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) | ||
| Theorem | brin2 38445 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉)) | ||
| Theorem | brin3 38446 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆){{𝐵}})) | ||
| Definition | df-coss 38447* |
Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by
𝑅 iff there exists a set 𝑢 such
that both 𝑢𝑅𝑥 and
𝑢𝑅𝑦 hold, i.e., both 𝑥 and
𝑦
are are elements of the 𝑅
-coset of 𝑢 (see dfcoss2 38449 and the comment of dfec2 8625). 𝑅 is
usually a relation.
This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to ≀ 𝑅 (see e.g. pet 38888). Without the definition of ≀ 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38450) or to the range of a range Cartesian product of classes (cf. dfcoss4 38451), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38449. Technically, we can define it via composition (dfcoss3 38450) or as the range of a range Cartesian product (dfcoss4 38451), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38718, df-funALTV 38719) and disjoints (dfdisjs 38745, dfdisjs2 38746, df-disjALTV 38742, dfdisjALTV2 38751) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Definition | df-coels 38448 | Define the class of coelements on the class 𝐴, see also the alternate definition dfcoels 38466. Possible definitions are the special cases of dfcoss3 38450 and dfcoss4 38451. (Contributed by Peter Mazsa, 20-Nov-2019.) |
| ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | ||
| Theorem | dfcoss2 38449* | Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8625). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} | ||
| Theorem | dfcoss3 38450 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38447). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | ||
| Theorem | dfcoss4 38451 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38447). (Contributed by Peter Mazsa, 12-Jul-2021.) |
| ⊢ ≀ 𝑅 = ran (𝑅 ⋉ 𝑅) | ||
| Theorem | cosscnv 38452* | Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.) |
| ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} | ||
| Theorem | coss1cnvres 38453* | Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} | ||
| Theorem | coss2cnvepres 38454* | Special case of coss1cnvres 38453. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} | ||
| Theorem | cossex 38455 | If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | ||
| Theorem | cosscnvex 38456 | If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) | ||
| Theorem | 1cosscnvepresex 38457 | Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | ||
| Theorem | 1cossxrncnvepresex 38458 | Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | relcoss 38459 | Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ Rel ≀ 𝑅 | ||
| Theorem | relcoels 38460 | Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ Rel ∼ 𝐴 | ||
| Theorem | cossss 38461 | Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | ||
| Theorem | cosseq 38462 | Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | cosseqi 38463 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ≀ 𝐴 = ≀ 𝐵 | ||
| Theorem | cosseqd 38464 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | 1cossres 38465* | The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Theorem | dfcoels 38466* | Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | ||
| Theorem | brcoss 38467* | 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | ||
| Theorem | brcoss2 38468* | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅))) | ||
| Theorem | brcoss3 38469 | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | ||
| Theorem | brcosscnvcoss 38470 | For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) | ||
| Theorem | brcoels 38471* | 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | ||
| Theorem | cocossss 38472* | Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) | ||
| Theorem | cnvcosseq 38473 | The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
| ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | ||
| Theorem | br2coss 38474 | Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) | ||
| Theorem | br1cossres 38475* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) | ||
| Theorem | br1cossres2 38476* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅))) | ||
| Theorem | brressn 38477 | Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) | ||
| Theorem | ressn2 38478* | A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.) |
| ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} | ||
| Theorem | refressn 38479* | Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38478) is reflexive, see also refrelressn 38560. (Contributed by Peter Mazsa, 12-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥) | ||
| Theorem | antisymressn 38480 | Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38478) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024.) |
| ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) | ||
| Theorem | trressn 38481 | Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38478) is transitive, see also trrelressn 38619. (Contributed by Peter Mazsa, 16-Jun-2024.) |
| ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) | ||
| Theorem | relbrcoss 38482* | 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel 𝑅 → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅)))) | ||
| Theorem | br1cossinres 38483* | 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossxrnres 38484* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | br1cossinidres 38485* | 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossincnvepres 38486* | 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossxrnidres 38487* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | br1cossxrncnvepres 38488* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | dmcoss3 38489 | The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ dom ≀ 𝑅 = dom ◡𝑅 | ||
| Theorem | dmcoss2 38490 | The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ dom ≀ 𝑅 = ran 𝑅 | ||
| Theorem | rncossdmcoss 38491 | The range of cosets is the domain of them (this should be rncoss 5916 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
| ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | ||
| Theorem | dm1cosscnvepres 38492 | The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 | ||
| Theorem | dmcoels 38493 | The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ dom ∼ 𝐴 = ∪ 𝐴 | ||
| Theorem | eldmcoss 38494* | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | ||
| Theorem | eldmcoss2 38495 | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) | ||
| Theorem | eldm1cossres 38496* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) | ||
| Theorem | eldm1cossres2 38497* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) | ||
| Theorem | refrelcosslem 38498 | Lemma for the left side of the refrelcoss3 38499 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
| ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | ||
| Theorem | refrelcoss3 38499* | The class of cosets by 𝑅 is reflexive, see dfrefrel3 38552. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) | ||
| Theorem | refrelcoss2 38500 | The class of cosets by 𝑅 is reflexive, see dfrefrel2 38551. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |