HomeHome Metamath Proof Explorer
Theorem List (p. 385 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30166)
  Hilbert Space Explorer  Hilbert Space Explorer
(30167-31689)
  Users' Mathboxes  Users' Mathboxes
(31690-47842)
 

Theorem List for Metamath Proof Explorer - 38401-38500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremislpln5 38401* The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑃 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (𝑝 β‰  π‘ž ∧ Β¬ π‘Ÿ ≀ (𝑝 ∨ π‘ž) ∧ 𝑋 = ((𝑝 ∨ π‘ž) ∨ π‘Ÿ))))
 
Theoremislpln2 38402* The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (𝐾 ∈ HL β†’ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (𝑝 β‰  π‘ž ∧ Β¬ π‘Ÿ ≀ (𝑝 ∨ π‘ž) ∧ 𝑋 = ((𝑝 ∨ π‘ž) ∨ π‘Ÿ)))))
 
Theoremlplni2 38403 The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅))) β†’ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)
 
Theoremlvolex3N 38404* There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) β†’ βˆƒπ‘ž ∈ 𝐴 Β¬ π‘ž ≀ 𝑋)
 
TheoremllnmlplnN 38405 The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑃) ∧ (Β¬ 𝑋 ≀ π‘Œ ∧ (𝑋 ∧ π‘Œ) β‰  0 )) β†’ (𝑋 ∧ π‘Œ) ∈ 𝐴)
 
Theoremlplnle 38406* Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ (𝑋 β‰  0 ∧ Β¬ 𝑋 ∈ 𝐴 ∧ Β¬ 𝑋 ∈ 𝑁)) β†’ βˆƒπ‘¦ ∈ 𝑃 𝑦 ≀ 𝑋)
 
Theoremlplnnle2at 38407 A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ Β¬ 𝑋 ≀ (𝑄 ∨ 𝑅))
 
Theoremlplnnleat 38408 A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) β†’ Β¬ 𝑋 ≀ 𝑄)
 
Theoremlplnnlelln 38409 A lattice plane is not less than or equal to a lattice line. (Contributed by NM, 14-Jul-2012.)
≀ = (leβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑁) β†’ Β¬ 𝑋 ≀ π‘Œ)
 
Theorem2atnelpln 38410 The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012.)
∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ Β¬ (𝑄 ∨ 𝑅) ∈ 𝑃)
 
Theoremlplnneat 38411 No lattice plane is an atom. (Contributed by NM, 15-Jul-2012.)
𝐴 = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) β†’ Β¬ 𝑋 ∈ 𝐴)
 
Theoremlplnnelln 38412 No lattice plane is a lattice line. (Contributed by NM, 19-Jun-2012.)
𝑁 = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) β†’ Β¬ 𝑋 ∈ 𝑁)
 
Theoremlplnn0N 38413 A lattice plane is nonzero. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.)
0 = (0.β€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) β†’ 𝑋 β‰  0 )
 
Theoremislpln2a 38414 The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅))))
 
Theoremislpln2ah 38415 The predicate "is a lattice plane" for join of atoms. Version of islpln2a 38414 expressed with an abbreviation hypothesis. (Contributed by NM, 30-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (π‘Œ ∈ 𝑃 ↔ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅))))
 
TheoremlplnriaN 38416 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ π‘Œ ∈ 𝑃) β†’ Β¬ 𝑄 ≀ (𝑅 ∨ 𝑆))
 
TheoremlplnribN 38417 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ π‘Œ ∈ 𝑃) β†’ Β¬ 𝑅 ≀ (𝑄 ∨ 𝑆))
 
Theoremlplnric 38418 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ π‘Œ ∈ 𝑃) β†’ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅))
 
Theoremlplnri1 38419 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.)
∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ π‘Œ ∈ 𝑃) β†’ 𝑄 β‰  𝑅)
 
Theoremlplnri2N 38420 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ π‘Œ ∈ 𝑃) β†’ 𝑄 β‰  𝑆)
 
Theoremlplnri3N 38421 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ π‘Œ ∈ 𝑃) β†’ 𝑅 β‰  𝑆)
 
TheoremlplnllnneN 38422 Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘Œ = ((𝑄 ∨ 𝑅) ∨ 𝑆)    β‡’   ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ π‘Œ ∈ 𝑃) β†’ (𝑄 ∨ 𝑆) β‰  (𝑅 ∨ 𝑆))
 
Theoremllncvrlpln2 38423 A lattice line under a lattice plane is covered by it. (Contributed by NM, 24-Jun-2012.)
≀ = (leβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑃) ∧ 𝑋 ≀ π‘Œ) β†’ π‘‹πΆπ‘Œ)
 
Theoremllncvrlpln 38424 An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.)
𝐡 = (Baseβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ (𝑋 ∈ 𝑁 ↔ π‘Œ ∈ 𝑃))
 
Theorem2lplnmN 38425 If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012.) (New usage is discouraged.)
∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃) ∧ 𝑋𝐢(𝑋 ∨ π‘Œ)) β†’ (𝑋 ∧ π‘Œ) ∈ 𝑁)
 
Theorem2llnmj 38426 The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.)
∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ ((𝑋 ∧ π‘Œ) ∈ 𝐴 ↔ (𝑋 ∨ π‘Œ) ∈ 𝑃))
 
Theorem2atmat 38427 The meet of two intersecting lines (expressed as joins of atoms) is an atom. (Contributed by NM, 21-Nov-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑆 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴)
 
Theoremlplncmp 38428 If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.)
≀ = (leβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃) β†’ (𝑋 ≀ π‘Œ ↔ 𝑋 = π‘Œ))
 
TheoremlplnexatN 38429* Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑁) ∧ π‘Œ ≀ 𝑋) β†’ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž ≀ π‘Œ ∧ 𝑋 = (π‘Œ ∨ π‘ž)))
 
TheoremlplnexllnN 38430* Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
 
Theoremlplnnlt 38431 Two lattice planes cannot satisfy the less than relation. (Contributed by NM, 7-Jul-2012.)
< = (ltβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃) β†’ Β¬ 𝑋 < π‘Œ)
 
Theorem2llnjaN 38432 The join of two different lattice lines in a lattice plane equals the plane (version of 2llnjN 38433 in terms of atoms). (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝑃) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 β‰  𝑅) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 β‰  𝑇)) ∧ ((𝑄 ∨ 𝑅) ≀ π‘Š ∧ (𝑆 ∨ 𝑇) ≀ π‘Š ∧ (𝑄 ∨ 𝑅) β‰  (𝑆 ∨ 𝑇))) β†’ ((𝑄 ∨ 𝑅) ∨ (𝑆 ∨ 𝑇)) = π‘Š)
 
Theorem2llnjN 38433 The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (𝑋 ∨ π‘Œ) = π‘Š)
 
Theorem2llnm2N 38434 The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (𝑋 ∧ π‘Œ) ∈ 𝐴)
 
Theorem2llnm3N 38435 Two lattice lines in a lattice plane always meet. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š)) β†’ (𝑋 ∧ π‘Œ) β‰  0 )
 
Theorem2llnm4 38436 Two lattice lines that majorize the same atom always meet. (Contributed by NM, 20-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) ∧ (𝑃 ≀ 𝑋 ∧ 𝑃 ≀ π‘Œ)) β†’ (𝑋 ∧ π‘Œ) β‰  0 )
 
Theorem2llnmeqat 38437 An atom equals the intersection of two majorizing lines. (Contributed by NM, 3-Apr-2013.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 β‰  π‘Œ ∧ 𝑃 ≀ (𝑋 ∧ π‘Œ))) β†’ 𝑃 = (𝑋 ∧ π‘Œ))
 
Theoremlvolset 38438* The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (𝐾 ∈ 𝐴 β†’ 𝑉 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯})
 
Theoremislvol 38439* The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋)))
 
Theoremislvol4 38440* The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋))
 
Theoremlvoli 38441 Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (((𝐾 ∈ 𝐷 ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 ∈ 𝑃) ∧ π‘‹πΆπ‘Œ) β†’ π‘Œ ∈ 𝑉)
 
Theoremislvol3 38442* The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝))))
 
Theoremlvoli3 38443 Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ (𝑋 ∨ 𝑄) ∈ 𝑉)
 
Theoremlvolbase 38444 A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ 𝐡)
 
Theoremislvol5 38445* The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑉 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 βˆƒπ‘  ∈ 𝐴 ((𝑝 β‰  π‘ž ∧ Β¬ π‘Ÿ ≀ (𝑝 ∨ π‘ž) ∧ Β¬ 𝑠 ≀ ((𝑝 ∨ π‘ž) ∨ π‘Ÿ)) ∧ 𝑋 = (((𝑝 ∨ π‘ž) ∨ π‘Ÿ) ∨ 𝑠))))
 
Theoremislvol2 38446* The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (𝐾 ∈ HL β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 βˆƒπ‘  ∈ 𝐴 ((𝑝 β‰  π‘ž ∧ Β¬ π‘Ÿ ≀ (𝑝 ∨ π‘ž) ∧ Β¬ 𝑠 ≀ ((𝑝 ∨ π‘ž) ∨ π‘Ÿ)) ∧ 𝑋 = (((𝑝 ∨ π‘ž) ∨ π‘Ÿ) ∨ 𝑠)))))
 
Theoremlvoli2 38447 The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉)
 
Theoremlvolnle3at 38448 A lattice plane (or lattice line or atom) cannot majorize a lattice volume. (Contributed by NM, 8-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ Β¬ 𝑋 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))
 
Theoremlvolnleat 38449 An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ Β¬ 𝑋 ≀ 𝑃)
 
Theoremlvolnlelln 38450 A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
≀ = (leβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑁) β†’ Β¬ 𝑋 ≀ π‘Œ)
 
Theoremlvolnlelpln 38451 A lattice plane cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
≀ = (leβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑃) β†’ Β¬ 𝑋 ≀ π‘Œ)
 
Theorem3atnelvolN 38452 The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ Β¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉)
 
Theorem2atnelvolN 38453 The join of two atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ Β¬ (𝑃 ∨ 𝑄) ∈ 𝑉)
 
TheoremlvolneatN 38454 No lattice volume is an atom. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) β†’ Β¬ 𝑋 ∈ 𝐴)
 
Theoremlvolnelln 38455 No lattice volume is a lattice line. (Contributed by NM, 15-Jul-2012.)
𝑁 = (LLinesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) β†’ Β¬ 𝑋 ∈ 𝑁)
 
Theoremlvolnelpln 38456 No lattice volume is a lattice plane. (Contributed by NM, 19-Jun-2012.)
𝑃 = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) β†’ Β¬ 𝑋 ∈ 𝑃)
 
Theoremlvoln0N 38457 A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
0 = (0.β€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 β‰  0 )
 
Theoremislvol2aN 38458 The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ 𝑉 ↔ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))))
 
Theorem4atlem0a 38459 Lemma for 4at 38479. (Contributed by NM, 10-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
 
Theorem4atlem0ae 38460 Lemma for 4at 38479. (Contributed by NM, 10-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ 𝑅))
 
Theorem4atlem0be 38461 Lemma for 4at 38479. (Contributed by NM, 10-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 β‰  𝑅)
 
Theorem4atlem3 38462 Lemma for 4at 38479. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((Β¬ 𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ 𝑉) ∨ Β¬ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ 𝑉)) ∨ (Β¬ 𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ 𝑉))))
 
Theorem4atlem3a 38463 Lemma for 4at 38479. Break inequality into 3 cases. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑄 ≀ ((𝑃 ∨ π‘ˆ) ∨ 𝑉) ∨ Β¬ 𝑅 ≀ ((𝑃 ∨ π‘ˆ) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ π‘ˆ) ∨ 𝑉)))
 
Theorem4atlem3b 38464 Lemma for 4at 38479. Break inequality into 2 cases. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉) ∨ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑉)))
 
Theorem4atlem4a 38465 Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑃 ∨ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
 
Theorem4atlem4b 38466 Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∨ 𝑆)))
 
Theorem4atlem4c 38467 Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑅 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑆)))
 
Theorem4atlem4d 38468 Lemma for 4at 38479. Frequently used associative law. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑆 ∨ ((𝑃 ∨ 𝑄) ∨ 𝑅)))
 
Theorem4atlem9 38469 Lemma for 4at 38479. Substitute π‘Š for 𝑆. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)) β†’ (𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ π‘Š)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ π‘Š))))
 
Theorem4atlem10a 38470 Lemma for 4at 38479. Substitute 𝑉 for 𝑅. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ π‘Š)) β†’ (𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ π‘Š)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š))))
 
Theorem4atlem10b 38471 Lemma for 4at 38479. Substitute 𝑉 for 𝑅 (cont.). (Contributed by NM, 10-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (π‘Š ∈ 𝐴 ∧ Β¬ 𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ π‘Š) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≀ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š)))
 
Theorem4atlem10 38472 Lemma for 4at 38479. Combine both possible cases. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑅 ∨ 𝑆) ≀ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š))))
 
Theorem4atlem11a 38473 Lemma for 4at 38479. Substitute π‘ˆ for 𝑄. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑉) ∨ π‘Š)) β†’ (𝑄 ≀ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ π‘Š)) = ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
 
Theorem4atlem11b 38474 Lemma for 4at 38479. Substitute π‘ˆ for 𝑄 (cont.). (Contributed by NM, 10-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)) ∧ Β¬ 𝑄 ≀ ((𝑃 ∨ 𝑉) ∨ π‘Š)) ∧ (𝑄 ≀ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑅 ≀ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
 
Theorem4atlem11 38475 Lemma for 4at 38479. Combine all three possible cases. (Contributed by NM, 10-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((𝑄 ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
 
Theorem4atlem12a 38476 Lemma for 4at 38479. Substitute 𝑇 for 𝑃. (Contributed by NM, 9-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
 
Theorem4atlem12b 38477 Lemma for 4at 38479. Substitute 𝑇 for 𝑃 (cont.). (Contributed by NM, 11-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ∧ ((𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑄 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))) ∧ (𝑅 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∧ 𝑆 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
 
Theorem4atlem12 38478 Lemma for 4at 38479. Combine all four possible cases. (Contributed by NM, 11-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
 
Theorem4at 38479 Four atoms determine a lattice volume uniquely. Three-dimensional analogue of ps-1 38343 and 3at 38356. (Contributed by NM, 11-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
 
Theorem4at2 38480 Four atoms determine a lattice volume uniquely. (Contributed by NM, 11-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ≀ (((𝑇 ∨ π‘ˆ) ∨ 𝑉) ∨ π‘Š) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = (((𝑇 ∨ π‘ˆ) ∨ 𝑉) ∨ π‘Š)))
 
Theoremlplncvrlvol2 38481 A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.)
≀ = (leβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑉) ∧ 𝑋 ≀ π‘Œ) β†’ π‘‹πΆπ‘Œ)
 
Theoremlplncvrlvol 38482 An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012.)
𝐡 = (Baseβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ (𝑋 ∈ 𝑃 ↔ π‘Œ ∈ 𝑉))
 
Theoremlvolcmp 38483 If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012.)
≀ = (leβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 ≀ π‘Œ ↔ 𝑋 = π‘Œ))
 
TheoremlvolnltN 38484 Two lattice volumes cannot satisfy the less than relation. (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.)
< = (ltβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ Β¬ 𝑋 < π‘Œ)
 
Theorem2lplnja 38485 The join of two different lattice planes in a lattice volume equals the volume (version of 2lplnj 38486 in terms of atoms). (Contributed by NM, 12-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) ∧ (𝑆 β‰  𝑇 ∧ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ π‘Š ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ≀ π‘Š ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) β‰  ((𝑆 ∨ 𝑇) ∨ π‘ˆ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) = π‘Š)
 
Theorem2lplnj 38486 The join of two different lattice planes in a (3-dimensional) lattice volume equals the volume. (Contributed by NM, 12-Jul-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ π‘Š ∈ 𝑉) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (𝑋 ∨ π‘Œ) = π‘Š)
 
Theorem2lplnm2N 38487 The meet of two different lattice planes in a lattice volume is a lattice line. (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ π‘Š ∈ 𝑉) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (𝑋 ∧ π‘Œ) ∈ 𝑁)
 
Theorem2lplnmj 38488 The meet of two lattice planes is a lattice line iff their join is a lattice volume. (Contributed by NM, 13-Jul-2012.)
∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π‘ = (LLinesβ€˜πΎ)    &   π‘ƒ = (LPlanesβ€˜πΎ)    &   π‘‰ = (LVolsβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃) β†’ ((𝑋 ∧ π‘Œ) ∈ 𝑁 ↔ (𝑋 ∨ π‘Œ) ∈ 𝑉))
 
Theoremdalemkehl 38489 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝐾 ∈ HL)
 
Theoremdalemkelat 38490 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝐾 ∈ Lat)
 
Theoremdalemkeop 38491 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝐾 ∈ OP)
 
Theoremdalempea 38492 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝑃 ∈ 𝐴)
 
Theoremdalemqea 38493 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝑄 ∈ 𝐴)
 
Theoremdalemrea 38494 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝑅 ∈ 𝐴)
 
Theoremdalemsea 38495 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝑆 ∈ 𝐴)
 
Theoremdalemtea 38496 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝑇 ∈ 𝐴)
 
Theoremdalemuea 38497 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ π‘ˆ ∈ 𝐴)
 
Theoremdalemyeo 38498 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ π‘Œ ∈ 𝑂)
 
Theoremdalemzeo 38499 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝑍 ∈ 𝑂)
 
Theoremdalemclpjs 38500 Lemma for dath 38602. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
(πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))    β‡’   (πœ‘ β†’ 𝐢 ≀ (𝑃 ∨ 𝑆))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47842
  Copyright terms: Public domain < Previous  Next >