| Metamath
Proof Explorer Theorem List (p. 385 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brin3 38401 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆){{𝐵}})) | ||
| Definition | df-coss 38402* |
Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by
𝑅 iff there exists a set 𝑢 such
that both 𝑢𝑅𝑥 and
𝑢𝑅𝑦 hold, i.e., both 𝑥 and
𝑦
are are elements of the 𝑅
-coset of 𝑢 (see dfcoss2 38404 and the comment of dfec2 8674). 𝑅 is
usually a relation.
This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to ≀ 𝑅 (see e.g. pet 38843). Without the definition of ≀ 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38405) or to the range of a range Cartesian product of classes (cf. dfcoss4 38406), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38404. Technically, we can define it via composition (dfcoss3 38405) or as the range of a range Cartesian product (dfcoss4 38406), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38673, df-funALTV 38674) and disjoints (dfdisjs 38700, dfdisjs2 38701, df-disjALTV 38697, dfdisjALTV2 38706) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Definition | df-coels 38403 | Define the class of coelements on the class 𝐴, see also the alternate definition dfcoels 38421. Possible definitions are the special cases of dfcoss3 38405 and dfcoss4 38406. (Contributed by Peter Mazsa, 20-Nov-2019.) |
| ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | ||
| Theorem | dfcoss2 38404* | Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8674). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} | ||
| Theorem | dfcoss3 38405 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38402). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | ||
| Theorem | dfcoss4 38406 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38402). (Contributed by Peter Mazsa, 12-Jul-2021.) |
| ⊢ ≀ 𝑅 = ran (𝑅 ⋉ 𝑅) | ||
| Theorem | cosscnv 38407* | Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.) |
| ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} | ||
| Theorem | coss1cnvres 38408* | Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} | ||
| Theorem | coss2cnvepres 38409* | Special case of coss1cnvres 38408. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} | ||
| Theorem | cossex 38410 | If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | ||
| Theorem | cosscnvex 38411 | If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) | ||
| Theorem | 1cosscnvepresex 38412 | Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | ||
| Theorem | 1cossxrncnvepresex 38413 | Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | relcoss 38414 | Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ Rel ≀ 𝑅 | ||
| Theorem | relcoels 38415 | Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ Rel ∼ 𝐴 | ||
| Theorem | cossss 38416 | Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | ||
| Theorem | cosseq 38417 | Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | cosseqi 38418 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ≀ 𝐴 = ≀ 𝐵 | ||
| Theorem | cosseqd 38419 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | 1cossres 38420* | The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Theorem | dfcoels 38421* | Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | ||
| Theorem | brcoss 38422* | 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | ||
| Theorem | brcoss2 38423* | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅))) | ||
| Theorem | brcoss3 38424 | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | ||
| Theorem | brcosscnvcoss 38425 | For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) | ||
| Theorem | brcoels 38426* | 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | ||
| Theorem | cocossss 38427* | Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) | ||
| Theorem | cnvcosseq 38428 | The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
| ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | ||
| Theorem | br2coss 38429 | Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) | ||
| Theorem | br1cossres 38430* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) | ||
| Theorem | br1cossres2 38431* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅))) | ||
| Theorem | brressn 38432 | Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝑅 ↾ {𝐴})𝐶 ↔ (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶))) | ||
| Theorem | ressn2 38433* | A class ' R ' restricted to the singleton of the class ' A ' is the ordered pair class abstraction of the class ' A ' and the sets in relation ' R ' to ' A ' (and not in relation to the singleton ' { A } ' ). (Contributed by Peter Mazsa, 16-Jun-2024.) |
| ⊢ (𝑅 ↾ {𝐴}) = {〈𝑎, 𝑢〉 ∣ (𝑎 = 𝐴 ∧ 𝐴𝑅𝑢)} | ||
| Theorem | refressn 38434* | Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38433) is reflexive, see also refrelressn 38515. (Contributed by Peter Mazsa, 12-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥) | ||
| Theorem | antisymressn 38435 | Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38433) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024.) |
| ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) | ||
| Theorem | trressn 38436 | Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38433) is transitive, see also trrelressn 38574. (Contributed by Peter Mazsa, 16-Jun-2024.) |
| ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑧) → 𝑥(𝑅 ↾ {𝐴})𝑧) | ||
| Theorem | relbrcoss 38437* | 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel 𝑅 → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅)))) | ||
| Theorem | br1cossinres 38438* | 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossxrnres 38439* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | br1cossinidres 38440* | 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossincnvepres 38441* | 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) | ||
| Theorem | br1cossxrnidres 38442* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | br1cossxrncnvepres 38443* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | dmcoss3 38444 | The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ dom ≀ 𝑅 = dom ◡𝑅 | ||
| Theorem | dmcoss2 38445 | The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ dom ≀ 𝑅 = ran 𝑅 | ||
| Theorem | rncossdmcoss 38446 | The range of cosets is the domain of them (this should be rncoss 5939 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
| ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | ||
| Theorem | dm1cosscnvepres 38447 | The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 | ||
| Theorem | dmcoels 38448 | The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ dom ∼ 𝐴 = ∪ 𝐴 | ||
| Theorem | eldmcoss 38449* | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | ||
| Theorem | eldmcoss2 38450 | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) | ||
| Theorem | eldm1cossres 38451* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) | ||
| Theorem | eldm1cossres2 38452* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) | ||
| Theorem | refrelcosslem 38453 | Lemma for the left side of the refrelcoss3 38454 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
| ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | ||
| Theorem | refrelcoss3 38454* | The class of cosets by 𝑅 is reflexive, see dfrefrel3 38507. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) | ||
| Theorem | refrelcoss2 38455 | The class of cosets by 𝑅 is reflexive, see dfrefrel2 38506. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
| Theorem | symrelcoss3 38456 | The class of cosets by 𝑅 is symmetric, see dfsymrel3 38541. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) | ||
| Theorem | symrelcoss2 38457 | The class of cosets by 𝑅 is symmetric, see dfsymrel2 38540. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
| Theorem | cossssid 38458 | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | ||
| Theorem | cossssid2 38459* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | cossssid3 38460* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | cossssid4 38461* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | ||
| Theorem | cossssid5 38462* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) | ||
| Theorem | brcosscnv 38463* | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
| Theorem | brcosscnv2 38464 | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅)) | ||
| Theorem | br1cosscnvxrn 38465 | 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ (𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵))) | ||
| Theorem | 1cosscnvxrn 38466 | Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) | ||
| Theorem | cosscnvssid3 38467* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
| ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) | ||
| Theorem | cosscnvssid4 38468* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | ||
| Theorem | cosscnvssid5 38469* | Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
| Theorem | coss0 38470 | Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
| ⊢ ≀ ∅ = ∅ | ||
| Theorem | cossid 38471 | Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
| ⊢ ≀ I = I | ||
| Theorem | cosscnvid 38472 | Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ≀ ◡ I = I | ||
| Theorem | trcoss 38473* | Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
| ⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
| Theorem | eleccossin 38474 | Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) | ||
| Theorem | trcoss2 38475* | Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.) |
| ⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
| Definition | df-rels 38476 |
Define the relations class. Proper class relations (like I, see
reli 5789) are not elements of it. The element of this
class and the
relation predicate are the same when 𝑅 is a set (see elrelsrel 38478).
The class of relations is a great tool we can use when we define classes of different relations as nullary class constants as required by the 2. point in our Guidelines https://us.metamath.org/mpeuni/mathbox.html 38478. When we want to define a specific class of relations as a nullary class constant, the appropriate method is the following: 1. We define the specific nullary class constant for general sets (see e.g. df-refs 38501), then 2. we get the required class of relations by the intersection of the class of general sets above with the class of relations df-rels 38476 (see df-refrels 38502 and the resulting dfrefrels2 38504 and dfrefrels3 38505). 3. Finally, in order to be able to work with proper classes (like iprc 7887) as well, we define the predicate of the relation (see df-refrel 38503) so that it is true for the relevant proper classes (see refrelid 38513), and that the element of the class of the required relations (e.g. elrefrels3 38510) and this predicate are the same in case of sets (see elrefrelsrel 38511). (Contributed by Peter Mazsa, 13-Jun-2018.) |
| ⊢ Rels = 𝒫 (V × V) | ||
| Theorem | elrels2 38477 | The element of the relations class (df-rels 38476) and the relation predicate (df-rel 5645) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | ||
| Theorem | elrelsrel 38478 | The element of the relations class (df-rels 38476) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | ||
| Theorem | elrelsrelim 38479 | The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| ⊢ (𝑅 ∈ Rels → Rel 𝑅) | ||
| Theorem | elrels5 38480 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ↾ dom 𝑅) = 𝑅)) | ||
| Theorem | elrels6 38481 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)) | ||
| Theorem | elrelscnveq3 38482* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | ||
| Theorem | elrelscnveq 38483 | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) | ||
| Theorem | elrelscnveq2 38484* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
| Theorem | elrelscnveq4 38485* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
| ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
| Theorem | cnvelrels 38486 | The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) | ||
| Theorem | cosselrels 38487 | Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) | ||
| Theorem | cosscnvelrels 38488 | Cosets of converse sets are elements of the relations class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ Rels ) | ||
| Definition | df-ssr 38489* |
Define the subsets class or the class of subset relations. Similar to
definitions of epsilon relation (df-eprel 5538) and identity relation
(df-id 5533) classes. Subset relation class and Scott
Fenton's subset
class df-sset 35844 are the same: S = SSet (compare dfssr2 38490 with
df-sset 35844), the only reason we do not use dfssr2 38490 as the base
definition of the subsets class is the way we defined the epsilon
relation and the identity relation classes.
The binary relation on the class of subsets and the subclass relationship (df-ss 3931) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set, see brssr 38492. Yet in general we use the subclass relation 𝐴 ⊆ 𝐵 both for classes and for sets, see the comment of df-ss 3931. The only exception (aside from directly investigating the class S e.g. in relssr 38491 or in extssr 38500) is when we have a specific purpose with its usage, like in case of df-refs 38501 versus df-cnvrefs 38516, where we need S to define the class of reflexive sets in order to be able to define the class of converse reflexive sets with the help of the converse of S. The subsets class S has another place in set.mm as well: if we define extensional relation based on the common property in extid 38298, extep 38271 and extssr 38500, then "extrelssr" " |- ExtRel S " is a theorem along with "extrelep" " |- ExtRel E " and "extrelid" " |- ExtRel I " . (Contributed by Peter Mazsa, 25-Jul-2019.) |
| ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | ||
| Theorem | dfssr2 38490 | Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) | ||
| Theorem | relssr 38491 | The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ Rel S | ||
| Theorem | brssr 38492 | The subset relation and subclass relationship (df-ss 3931) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | brssrid 38493 | Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) | ||
| Theorem | issetssr 38494 | Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) | ||
| Theorem | brssrres 38495 | Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
| Theorem | br1cnvssrres 38496 | Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | ||
| Theorem | brcnvssr 38497 | The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) | ||
| Theorem | brcnvssrid 38498 | Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴◡ S 𝐴) | ||
| Theorem | br1cossxrncnvssrres 38499* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
| Theorem | extssr 38500 | Property of subset relation, see also extid 38298, extep 38271 and the comment of df-ssr 38489. (Contributed by Peter Mazsa, 10-Jul-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |