Detailed syntax breakdown of Definition df-cvm
| Step | Hyp | Ref
| Expression |
| 1 | | ccvm 35260 |
. 2
class
CovMap |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | vj |
. . 3
setvar 𝑗 |
| 4 | | ctop 22899 |
. . 3
class
Top |
| 5 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 6 | | vk |
. . . . . . . 8
setvar 𝑘 |
| 7 | 5, 6 | wel 2109 |
. . . . . . 7
wff 𝑥 ∈ 𝑘 |
| 8 | | vs |
. . . . . . . . . . . 12
setvar 𝑠 |
| 9 | 8 | cv 1539 |
. . . . . . . . . . 11
class 𝑠 |
| 10 | 9 | cuni 4907 |
. . . . . . . . . 10
class ∪ 𝑠 |
| 11 | | vf |
. . . . . . . . . . . . 13
setvar 𝑓 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . . 12
class 𝑓 |
| 13 | 12 | ccnv 5684 |
. . . . . . . . . . 11
class ◡𝑓 |
| 14 | 6 | cv 1539 |
. . . . . . . . . . 11
class 𝑘 |
| 15 | 13, 14 | cima 5688 |
. . . . . . . . . 10
class (◡𝑓 “ 𝑘) |
| 16 | 10, 15 | wceq 1540 |
. . . . . . . . 9
wff ∪ 𝑠 =
(◡𝑓 “ 𝑘) |
| 17 | | vu |
. . . . . . . . . . . . . . 15
setvar 𝑢 |
| 18 | 17 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑢 |
| 19 | | vv |
. . . . . . . . . . . . . . 15
setvar 𝑣 |
| 20 | 19 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑣 |
| 21 | 18, 20 | cin 3950 |
. . . . . . . . . . . . 13
class (𝑢 ∩ 𝑣) |
| 22 | | c0 4333 |
. . . . . . . . . . . . 13
class
∅ |
| 23 | 21, 22 | wceq 1540 |
. . . . . . . . . . . 12
wff (𝑢 ∩ 𝑣) = ∅ |
| 24 | 18 | csn 4626 |
. . . . . . . . . . . . 13
class {𝑢} |
| 25 | 9, 24 | cdif 3948 |
. . . . . . . . . . . 12
class (𝑠 ∖ {𝑢}) |
| 26 | 23, 19, 25 | wral 3061 |
. . . . . . . . . . 11
wff
∀𝑣 ∈
(𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ |
| 27 | 12, 18 | cres 5687 |
. . . . . . . . . . . 12
class (𝑓 ↾ 𝑢) |
| 28 | 2 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑐 |
| 29 | | crest 17465 |
. . . . . . . . . . . . . 14
class
↾t |
| 30 | 28, 18, 29 | co 7431 |
. . . . . . . . . . . . 13
class (𝑐 ↾t 𝑢) |
| 31 | 3 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑗 |
| 32 | 31, 14, 29 | co 7431 |
. . . . . . . . . . . . 13
class (𝑗 ↾t 𝑘) |
| 33 | | chmeo 23761 |
. . . . . . . . . . . . 13
class
Homeo |
| 34 | 30, 32, 33 | co 7431 |
. . . . . . . . . . . 12
class ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)) |
| 35 | 27, 34 | wcel 2108 |
. . . . . . . . . . 11
wff (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)) |
| 36 | 26, 35 | wa 395 |
. . . . . . . . . 10
wff
(∀𝑣 ∈
(𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘))) |
| 37 | 36, 17, 9 | wral 3061 |
. . . . . . . . 9
wff
∀𝑢 ∈
𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘))) |
| 38 | 16, 37 | wa 395 |
. . . . . . . 8
wff (∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))) |
| 39 | 28 | cpw 4600 |
. . . . . . . . 9
class 𝒫
𝑐 |
| 40 | 22 | csn 4626 |
. . . . . . . . 9
class
{∅} |
| 41 | 39, 40 | cdif 3948 |
. . . . . . . 8
class
(𝒫 𝑐 ∖
{∅}) |
| 42 | 38, 8, 41 | wrex 3070 |
. . . . . . 7
wff
∃𝑠 ∈
(𝒫 𝑐 ∖
{∅})(∪ 𝑠 = (◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))) |
| 43 | 7, 42 | wa 395 |
. . . . . 6
wff (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘))))) |
| 44 | 43, 6, 31 | wrex 3070 |
. . . . 5
wff
∃𝑘 ∈
𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘))))) |
| 45 | 31 | cuni 4907 |
. . . . 5
class ∪ 𝑗 |
| 46 | 44, 5, 45 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘))))) |
| 47 | | ccn 23232 |
. . . . 5
class
Cn |
| 48 | 28, 31, 47 | co 7431 |
. . . 4
class (𝑐 Cn 𝑗) |
| 49 | 46, 11, 48 | crab 3436 |
. . 3
class {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))} |
| 50 | 2, 3, 4, 4, 49 | cmpo 7433 |
. 2
class (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) |
| 51 | 1, 50 | wceq 1540 |
1
wff CovMap =
(𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) |