![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fncvm | Structured version Visualization version GIF version |
Description: Lemma for covering maps. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
fncvm | ⊢ CovMap Fn (Top × Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cvm 35241 | . 2 ⊢ CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 = (◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) | |
2 | ovex 7464 | . . 3 ⊢ (𝑐 Cn 𝑗) ∈ V | |
3 | 2 | rabex 5345 | . 2 ⊢ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 = (◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))} ∈ V |
4 | 1, 3 | fnmpoi 8094 | 1 ⊢ CovMap Fn (Top × Top) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 {crab 3433 ∖ cdif 3960 ∩ cin 3962 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ∪ cuni 4912 × cxp 5687 ◡ccnv 5688 ↾ cres 5691 “ cima 5692 Fn wfn 6558 (class class class)co 7431 ↾t crest 17467 Topctop 22915 Cn ccn 23248 Homeochmeo 23777 CovMap ccvm 35240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-cvm 35241 |
This theorem is referenced by: cvmtop1 35245 cvmtop2 35246 |
Copyright terms: Public domain | W3C validator |