| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fncvm | Structured version Visualization version GIF version | ||
| Description: Lemma for covering maps. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| Ref | Expression |
|---|---|
| fncvm | ⊢ CovMap Fn (Top × Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cvm 35321 | . 2 ⊢ CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 = (◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) | |
| 2 | ovex 7385 | . . 3 ⊢ (𝑐 Cn 𝑗) ∈ V | |
| 3 | 2 | rabex 5279 | . 2 ⊢ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 = (◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))} ∈ V |
| 4 | 1, 3 | fnmpoi 8008 | 1 ⊢ CovMap Fn (Top × Top) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 {crab 3396 ∖ cdif 3895 ∩ cin 3897 ∅c0 4282 𝒫 cpw 4549 {csn 4575 ∪ cuni 4858 × cxp 5617 ◡ccnv 5618 ↾ cres 5621 “ cima 5622 Fn wfn 6481 (class class class)co 7352 ↾t crest 17326 Topctop 22809 Cn ccn 23140 Homeochmeo 23669 CovMap ccvm 35320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-cvm 35321 |
| This theorem is referenced by: cvmtop1 35325 cvmtop2 35326 |
| Copyright terms: Public domain | W3C validator |