Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvm Structured version   Visualization version   GIF version

Theorem iscvm 32494
 Description: The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
iscvm.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
iscvm.2 𝑋 = 𝐽
Assertion
Ref Expression
iscvm (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥   𝐶,𝑘,𝑠,𝑢,𝑥   𝑥,𝑋   𝑘,𝐹,𝑠,𝑢,𝑥   𝑘,𝐽,𝑠,𝑢,𝑥
Allowed substitution hints:   𝐶(𝑣)   𝑆(𝑥,𝑣,𝑢,𝑘,𝑠)   𝐹(𝑣)   𝐽(𝑣)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem iscvm
Dummy variables 𝑐 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 471 . 2 ((((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ (𝐹 ∈ (𝐶 Cn 𝐽) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅))))
2 df-3an 1083 . . 3 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ 𝐹 ∈ (𝐶 Cn 𝐽)))
32anbi1i 625 . 2 (((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)) ↔ (((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)))
4 df-cvm 32491 . . . 4 CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 𝑗𝑘𝑗 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘)))))})
54elmpocl 7379 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top))
6 oveq12 7157 . . . . . . 7 ((𝑐 = 𝐶𝑗 = 𝐽) → (𝑐 Cn 𝑗) = (𝐶 Cn 𝐽))
7 simpr 487 . . . . . . . . . 10 ((𝑐 = 𝐶𝑗 = 𝐽) → 𝑗 = 𝐽)
87unieqd 4840 . . . . . . . . 9 ((𝑐 = 𝐶𝑗 = 𝐽) → 𝑗 = 𝐽)
9 iscvm.2 . . . . . . . . 9 𝑋 = 𝐽
108, 9syl6eqr 2872 . . . . . . . 8 ((𝑐 = 𝐶𝑗 = 𝐽) → 𝑗 = 𝑋)
11 simpl 485 . . . . . . . . . . . . 13 ((𝑐 = 𝐶𝑗 = 𝐽) → 𝑐 = 𝐶)
1211pweqd 4542 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑗 = 𝐽) → 𝒫 𝑐 = 𝒫 𝐶)
1312difeq1d 4096 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑗 = 𝐽) → (𝒫 𝑐 ∖ {∅}) = (𝒫 𝐶 ∖ {∅}))
14 oveq1 7155 . . . . . . . . . . . . . . . 16 (𝑐 = 𝐶 → (𝑐t 𝑢) = (𝐶t 𝑢))
15 oveq1 7155 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑗t 𝑘) = (𝐽t 𝑘))
1614, 15oveqan12d 7167 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑗 = 𝐽) → ((𝑐t 𝑢)Homeo(𝑗t 𝑘)) = ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))
1716eleq2d 2896 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑗 = 𝐽) → ((𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘)) ↔ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))
1817anbi2d 630 . . . . . . . . . . . . 13 ((𝑐 = 𝐶𝑗 = 𝐽) → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘))) ↔ (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))
1918ralbidv 3195 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑗 = 𝐽) → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘))) ↔ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))
2019anbi2d 630 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑗 = 𝐽) → (( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘)))) ↔ ( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))))
2113, 20rexeqbidv 3401 . . . . . . . . . 10 ((𝑐 = 𝐶𝑗 = 𝐽) → (∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘)))) ↔ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))))
2221anbi2d 630 . . . . . . . . 9 ((𝑐 = 𝐶𝑗 = 𝐽) → ((𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘))))) ↔ (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
237, 22rexeqbidv 3401 . . . . . . . 8 ((𝑐 = 𝐶𝑗 = 𝐽) → (∃𝑘𝑗 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘))))) ↔ ∃𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
2410, 23raleqbidv 3400 . . . . . . 7 ((𝑐 = 𝐶𝑗 = 𝐽) → (∀𝑥 𝑗𝑘𝑗 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘))))) ↔ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
256, 24rabeqbidv 3484 . . . . . 6 ((𝑐 = 𝐶𝑗 = 𝐽) → {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 𝑗𝑘𝑗 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘)))))} = {𝑓 ∈ (𝐶 Cn 𝐽) ∣ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))})
26 ovex 7181 . . . . . . 7 (𝐶 Cn 𝐽) ∈ V
2726rabex 5226 . . . . . 6 {𝑓 ∈ (𝐶 Cn 𝐽) ∣ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))} ∈ V
2825, 4, 27ovmpoa 7297 . . . . 5 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (𝐶 CovMap 𝐽) = {𝑓 ∈ (𝐶 Cn 𝐽) ∣ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))})
2928eleq2d 2896 . . . 4 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶 Cn 𝐽) ∣ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))}))
30 id 22 . . . . . . . . . . . 12 (𝑘𝐽𝑘𝐽)
31 pwexg 5270 . . . . . . . . . . . . . 14 (𝐶 ∈ Top → 𝒫 𝐶 ∈ V)
3231adantr 483 . . . . . . . . . . . . 13 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → 𝒫 𝐶 ∈ V)
33 difexg 5222 . . . . . . . . . . . . 13 (𝒫 𝐶 ∈ V → (𝒫 𝐶 ∖ {∅}) ∈ V)
34 rabexg 5225 . . . . . . . . . . . . 13 ((𝒫 𝐶 ∖ {∅}) ∈ V → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} ∈ V)
3532, 33, 343syl 18 . . . . . . . . . . . 12 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} ∈ V)
36 iscvm.1 . . . . . . . . . . . . 13 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3736fvmpt2 6772 . . . . . . . . . . . 12 ((𝑘𝐽 ∧ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} ∈ V) → (𝑆𝑘) = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3830, 35, 37syl2anr 598 . . . . . . . . . . 11 (((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ 𝑘𝐽) → (𝑆𝑘) = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3938neeq1d 3073 . . . . . . . . . 10 (((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ 𝑘𝐽) → ((𝑆𝑘) ≠ ∅ ↔ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} ≠ ∅))
40 rabn0 4337 . . . . . . . . . 10 ({𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} ≠ ∅ ↔ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))
4139, 40syl6bb 289 . . . . . . . . 9 (((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ 𝑘𝐽) → ((𝑆𝑘) ≠ ∅ ↔ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))))
4241anbi2d 630 . . . . . . . 8 (((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ 𝑘𝐽) → ((𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
4342rexbidva 3294 . . . . . . 7 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (∃𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ ∃𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
4443ralbidv 3195 . . . . . 6 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅) ↔ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
4544anbi2d 630 . . . . 5 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)) ↔ (𝐹 ∈ (𝐶 Cn 𝐽) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))))))
46 cnveq 5737 . . . . . . . . . . . . 13 (𝑓 = 𝐹𝑓 = 𝐹)
4746imaeq1d 5921 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
4847eqeq2d 2830 . . . . . . . . . . 11 (𝑓 = 𝐹 → ( 𝑠 = (𝑓𝑘) ↔ 𝑠 = (𝐹𝑘)))
49 reseq1 5840 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
5049eleq1d 2895 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → ((𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) ↔ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))
5150anbi2d 630 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))
5251ralbidv 3195 . . . . . . . . . . 11 (𝑓 = 𝐹 → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))
5348, 52anbi12d 632 . . . . . . . . . 10 (𝑓 = 𝐹 → (( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))) ↔ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))))
5453rexbidv 3295 . . . . . . . . 9 (𝑓 = 𝐹 → (∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))) ↔ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))))
5554anbi2d 630 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))) ↔ (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
5655rexbidv 3295 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))) ↔ ∃𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
5756ralbidv 3195 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))) ↔ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
5857elrab 3678 . . . . 5 (𝐹 ∈ {𝑓 ∈ (𝐶 Cn 𝐽) ∣ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))} ↔ (𝐹 ∈ (𝐶 Cn 𝐽) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))))
5945, 58syl6bbr 291 . . . 4 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶 Cn 𝐽) ∣ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝐶 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))))}))
6029, 59bitr4d 284 . . 3 ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ (𝐹 ∈ (𝐶 Cn 𝐽) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅))))
615, 60biadanii 820 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top) ∧ (𝐹 ∈ (𝐶 Cn 𝐽) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅))))
621, 3, 613bitr4ri 306 1 (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥𝑋𝑘𝐽 (𝑥𝑘 ∧ (𝑆𝑘) ≠ ∅)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  ∀wral 3136  ∃wrex 3137  {crab 3140  Vcvv 3493   ∖ cdif 3931   ∩ cin 3933  ∅c0 4289  𝒫 cpw 4537  {csn 4559  ∪ cuni 4830   ↦ cmpt 5137  ◡ccnv 5547   ↾ cres 5550   “ cima 5551  ‘cfv 6348  (class class class)co 7148   ↾t crest 16686  Topctop 21493   Cn ccn 21824  Homeochmeo 22353   CovMap ccvm 32490 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-cvm 32491 This theorem is referenced by:  cvmcn  32497  cvmcov  32498
 Copyright terms: Public domain W3C validator