Detailed syntax breakdown of Definition df-dilN
Step | Hyp | Ref
| Expression |
1 | | cdilN 38043 |
. 2
class
Dil |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vd |
. . . 4
setvar 𝑑 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | catm 37204 |
. . . . 5
class
Atoms |
7 | 5, 6 | cfv 6418 |
. . . 4
class
(Atoms‘𝑘) |
8 | | vx |
. . . . . . . . 9
setvar 𝑥 |
9 | 8 | cv 1538 |
. . . . . . . 8
class 𝑥 |
10 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑑 |
11 | | cwpointsN 37927 |
. . . . . . . . . 10
class
WAtoms |
12 | 5, 11 | cfv 6418 |
. . . . . . . . 9
class
(WAtoms‘𝑘) |
13 | 10, 12 | cfv 6418 |
. . . . . . . 8
class
((WAtoms‘𝑘)‘𝑑) |
14 | 9, 13 | wss 3883 |
. . . . . . 7
wff 𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) |
15 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
16 | 15 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
17 | 9, 16 | cfv 6418 |
. . . . . . . 8
class (𝑓‘𝑥) |
18 | 17, 9 | wceq 1539 |
. . . . . . 7
wff (𝑓‘𝑥) = 𝑥 |
19 | 14, 18 | wi 4 |
. . . . . 6
wff (𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥) |
20 | | cpsubsp 37437 |
. . . . . . 7
class
PSubSp |
21 | 5, 20 | cfv 6418 |
. . . . . 6
class
(PSubSp‘𝑘) |
22 | 19, 8, 21 | wral 3063 |
. . . . 5
wff
∀𝑥 ∈
(PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥) |
23 | | cpautN 37928 |
. . . . . 6
class
PAut |
24 | 5, 23 | cfv 6418 |
. . . . 5
class
(PAut‘𝑘) |
25 | 22, 15, 24 | crab 3067 |
. . . 4
class {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)} |
26 | 4, 7, 25 | cmpt 5153 |
. . 3
class (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)}) |
27 | 2, 3, 26 | cmpt 5153 |
. 2
class (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
28 | 1, 27 | wceq 1539 |
1
wff Dil =
(𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |