Detailed syntax breakdown of Definition df-dilN
| Step | Hyp | Ref
| Expression |
| 1 | | cdilN 40126 |
. 2
class
Dil |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vd |
. . . 4
setvar 𝑑 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | catm 39286 |
. . . . 5
class
Atoms |
| 7 | 5, 6 | cfv 6536 |
. . . 4
class
(Atoms‘𝑘) |
| 8 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 9 | 8 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 10 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑑 |
| 11 | | cwpointsN 40010 |
. . . . . . . . . 10
class
WAtoms |
| 12 | 5, 11 | cfv 6536 |
. . . . . . . . 9
class
(WAtoms‘𝑘) |
| 13 | 10, 12 | cfv 6536 |
. . . . . . . 8
class
((WAtoms‘𝑘)‘𝑑) |
| 14 | 9, 13 | wss 3931 |
. . . . . . 7
wff 𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) |
| 15 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 16 | 15 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 17 | 9, 16 | cfv 6536 |
. . . . . . . 8
class (𝑓‘𝑥) |
| 18 | 17, 9 | wceq 1540 |
. . . . . . 7
wff (𝑓‘𝑥) = 𝑥 |
| 19 | 14, 18 | wi 4 |
. . . . . 6
wff (𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥) |
| 20 | | cpsubsp 39520 |
. . . . . . 7
class
PSubSp |
| 21 | 5, 20 | cfv 6536 |
. . . . . 6
class
(PSubSp‘𝑘) |
| 22 | 19, 8, 21 | wral 3052 |
. . . . 5
wff
∀𝑥 ∈
(PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥) |
| 23 | | cpautN 40011 |
. . . . . 6
class
PAut |
| 24 | 5, 23 | cfv 6536 |
. . . . 5
class
(PAut‘𝑘) |
| 25 | 22, 15, 24 | crab 3420 |
. . . 4
class {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)} |
| 26 | 4, 7, 25 | cmpt 5206 |
. . 3
class (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)}) |
| 27 | 2, 3, 26 | cmpt 5206 |
. 2
class (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
| 28 | 1, 27 | wceq 1540 |
1
wff Dil =
(𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |