Detailed syntax breakdown of Definition df-dilN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdilN 40105 | . 2
class
Dil | 
| 2 |  | vk | . . 3
setvar 𝑘 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 |  | vd | . . . 4
setvar 𝑑 | 
| 5 | 2 | cv 1538 | . . . . 5
class 𝑘 | 
| 6 |  | catm 39265 | . . . . 5
class
Atoms | 
| 7 | 5, 6 | cfv 6560 | . . . 4
class
(Atoms‘𝑘) | 
| 8 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 9 | 8 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 10 | 4 | cv 1538 | . . . . . . . . 9
class 𝑑 | 
| 11 |  | cwpointsN 39989 | . . . . . . . . . 10
class
WAtoms | 
| 12 | 5, 11 | cfv 6560 | . . . . . . . . 9
class
(WAtoms‘𝑘) | 
| 13 | 10, 12 | cfv 6560 | . . . . . . . 8
class
((WAtoms‘𝑘)‘𝑑) | 
| 14 | 9, 13 | wss 3950 | . . . . . . 7
wff 𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) | 
| 15 |  | vf | . . . . . . . . . 10
setvar 𝑓 | 
| 16 | 15 | cv 1538 | . . . . . . . . 9
class 𝑓 | 
| 17 | 9, 16 | cfv 6560 | . . . . . . . 8
class (𝑓‘𝑥) | 
| 18 | 17, 9 | wceq 1539 | . . . . . . 7
wff (𝑓‘𝑥) = 𝑥 | 
| 19 | 14, 18 | wi 4 | . . . . . 6
wff (𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥) | 
| 20 |  | cpsubsp 39499 | . . . . . . 7
class
PSubSp | 
| 21 | 5, 20 | cfv 6560 | . . . . . 6
class
(PSubSp‘𝑘) | 
| 22 | 19, 8, 21 | wral 3060 | . . . . 5
wff
∀𝑥 ∈
(PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥) | 
| 23 |  | cpautN 39990 | . . . . . 6
class
PAut | 
| 24 | 5, 23 | cfv 6560 | . . . . 5
class
(PAut‘𝑘) | 
| 25 | 22, 15, 24 | crab 3435 | . . . 4
class {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)} | 
| 26 | 4, 7, 25 | cmpt 5224 | . . 3
class (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)}) | 
| 27 | 2, 3, 26 | cmpt 5224 | . 2
class (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) | 
| 28 | 1, 27 | wceq 1539 | 1
wff Dil =
(𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |