Detailed syntax breakdown of Definition df-trnN
| Step | Hyp | Ref
| Expression |
| 1 | | ctrnN 40105 |
. 2
class
Trn |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vd |
. . . 4
setvar 𝑑 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | catm 39264 |
. . . . 5
class
Atoms |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(Atoms‘𝑘) |
| 8 | | vq |
. . . . . . . . . . 11
setvar 𝑞 |
| 9 | 8 | cv 1539 |
. . . . . . . . . 10
class 𝑞 |
| 10 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 12 | 9, 11 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑞) |
| 13 | | cpadd 39797 |
. . . . . . . . . . 11
class
+𝑃 |
| 14 | 5, 13 | cfv 6561 |
. . . . . . . . . 10
class
(+𝑃‘𝑘) |
| 15 | 9, 12, 14 | co 7431 |
. . . . . . . . 9
class (𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) |
| 16 | 4 | cv 1539 |
. . . . . . . . . . 11
class 𝑑 |
| 17 | 16 | csn 4626 |
. . . . . . . . . 10
class {𝑑} |
| 18 | | cpolN 39904 |
. . . . . . . . . . 11
class
⊥𝑃 |
| 19 | 5, 18 | cfv 6561 |
. . . . . . . . . 10
class
(⊥𝑃‘𝑘) |
| 20 | 17, 19 | cfv 6561 |
. . . . . . . . 9
class
((⊥𝑃‘𝑘)‘{𝑑}) |
| 21 | 15, 20 | cin 3950 |
. . . . . . . 8
class ((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) |
| 22 | | vr |
. . . . . . . . . . 11
setvar 𝑟 |
| 23 | 22 | cv 1539 |
. . . . . . . . . 10
class 𝑟 |
| 24 | 23, 11 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑟) |
| 25 | 23, 24, 14 | co 7431 |
. . . . . . . . 9
class (𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) |
| 26 | 25, 20 | cin 3950 |
. . . . . . . 8
class ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) |
| 27 | 21, 26 | wceq 1540 |
. . . . . . 7
wff ((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) |
| 28 | | cwpointsN 39988 |
. . . . . . . . 9
class
WAtoms |
| 29 | 5, 28 | cfv 6561 |
. . . . . . . 8
class
(WAtoms‘𝑘) |
| 30 | 16, 29 | cfv 6561 |
. . . . . . 7
class
((WAtoms‘𝑘)‘𝑑) |
| 31 | 27, 22, 30 | wral 3061 |
. . . . . 6
wff
∀𝑟 ∈
((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) |
| 32 | 31, 8, 30 | wral 3061 |
. . . . 5
wff
∀𝑞 ∈
((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) |
| 33 | | cdilN 40104 |
. . . . . . 7
class
Dil |
| 34 | 5, 33 | cfv 6561 |
. . . . . 6
class
(Dil‘𝑘) |
| 35 | 16, 34 | cfv 6561 |
. . . . 5
class
((Dil‘𝑘)‘𝑑) |
| 36 | 32, 10, 35 | crab 3436 |
. . . 4
class {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑}))} |
| 37 | 4, 7, 36 | cmpt 5225 |
. . 3
class (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑}))}) |
| 38 | 2, 3, 37 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑}))})) |
| 39 | 1, 38 | wceq 1540 |
1
wff Trn =
(𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑}))})) |