Step | Hyp | Ref
| Expression |
1 | | ctrnN 39277 |
. 2
class
Trn |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3472 |
. . 3
class
V |
4 | | vd |
. . . 4
setvar π |
5 | 2 | cv 1538 |
. . . . 5
class π |
6 | | catm 38436 |
. . . . 5
class
Atoms |
7 | 5, 6 | cfv 6542 |
. . . 4
class
(Atomsβπ) |
8 | | vq |
. . . . . . . . . . 11
setvar π |
9 | 8 | cv 1538 |
. . . . . . . . . 10
class π |
10 | | vf |
. . . . . . . . . . . 12
setvar π |
11 | 10 | cv 1538 |
. . . . . . . . . . 11
class π |
12 | 9, 11 | cfv 6542 |
. . . . . . . . . 10
class (πβπ) |
13 | | cpadd 38969 |
. . . . . . . . . . 11
class
+π |
14 | 5, 13 | cfv 6542 |
. . . . . . . . . 10
class
(+πβπ) |
15 | 9, 12, 14 | co 7411 |
. . . . . . . . 9
class (π(+πβπ)(πβπ)) |
16 | 4 | cv 1538 |
. . . . . . . . . . 11
class π |
17 | 16 | csn 4627 |
. . . . . . . . . 10
class {π} |
18 | | cpolN 39076 |
. . . . . . . . . . 11
class
β₯π |
19 | 5, 18 | cfv 6542 |
. . . . . . . . . 10
class
(β₯πβπ) |
20 | 17, 19 | cfv 6542 |
. . . . . . . . 9
class
((β₯πβπ)β{π}) |
21 | 15, 20 | cin 3946 |
. . . . . . . 8
class ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) |
22 | | vr |
. . . . . . . . . . 11
setvar π |
23 | 22 | cv 1538 |
. . . . . . . . . 10
class π |
24 | 23, 11 | cfv 6542 |
. . . . . . . . . 10
class (πβπ) |
25 | 23, 24, 14 | co 7411 |
. . . . . . . . 9
class (π(+πβπ)(πβπ)) |
26 | 25, 20 | cin 3946 |
. . . . . . . 8
class ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) |
27 | 21, 26 | wceq 1539 |
. . . . . . 7
wff ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) |
28 | | cwpointsN 39160 |
. . . . . . . . 9
class
WAtoms |
29 | 5, 28 | cfv 6542 |
. . . . . . . 8
class
(WAtomsβπ) |
30 | 16, 29 | cfv 6542 |
. . . . . . 7
class
((WAtomsβπ)βπ) |
31 | 27, 22, 30 | wral 3059 |
. . . . . 6
wff
βπ β
((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) |
32 | 31, 8, 30 | wral 3059 |
. . . . 5
wff
βπ β
((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) |
33 | | cdilN 39276 |
. . . . . . 7
class
Dil |
34 | 5, 33 | cfv 6542 |
. . . . . 6
class
(Dilβπ) |
35 | 16, 34 | cfv 6542 |
. . . . 5
class
((Dilβπ)βπ) |
36 | 32, 10, 35 | crab 3430 |
. . . 4
class {π β ((Dilβπ)βπ) β£ βπ β ((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π}))} |
37 | 4, 7, 36 | cmpt 5230 |
. . 3
class (π β (Atomsβπ) β¦ {π β ((Dilβπ)βπ) β£ βπ β ((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π}))}) |
38 | 2, 3, 37 | cmpt 5230 |
. 2
class (π β V β¦ (π β (Atomsβπ) β¦ {π β ((Dilβπ)βπ) β£ βπ β ((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π}))})) |
39 | 1, 38 | wceq 1539 |
1
wff Trn =
(π β V β¦ (π β (Atomsβπ) β¦ {π β ((Dilβπ)βπ) β£ βπ β ((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π}))})) |