Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilfsetN Structured version   Visualization version   GIF version

Theorem dilfsetN 38093
Description: The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
dilfsetN (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
Distinct variable groups:   𝐴,𝑑   𝑓,𝑑,𝑥,𝐾   𝑓,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓,𝑑)   𝑆(𝑓,𝑑)   𝐿(𝑥,𝑓,𝑑)   𝑀(𝑥,𝑑)   𝑊(𝑥,𝑓,𝑑)

Proof of Theorem dilfsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐾𝐵𝐾 ∈ V)
2 dilset.l . . 3 𝐿 = (Dil‘𝐾)
3 fveq2 6756 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 dilset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2797 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6756 . . . . . . 7 (𝑘 = 𝐾 → (PAut‘𝑘) = (PAut‘𝐾))
7 dilset.m . . . . . . 7 𝑀 = (PAut‘𝐾)
86, 7eqtr4di 2797 . . . . . 6 (𝑘 = 𝐾 → (PAut‘𝑘) = 𝑀)
9 fveq2 6756 . . . . . . . 8 (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾))
10 dilset.s . . . . . . . 8 𝑆 = (PSubSp‘𝐾)
119, 10eqtr4di 2797 . . . . . . 7 (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆)
12 fveq2 6756 . . . . . . . . . . 11 (𝑘 = 𝐾 → (WAtoms‘𝑘) = (WAtoms‘𝐾))
13 dilset.w . . . . . . . . . . 11 𝑊 = (WAtoms‘𝐾)
1412, 13eqtr4di 2797 . . . . . . . . . 10 (𝑘 = 𝐾 → (WAtoms‘𝑘) = 𝑊)
1514fveq1d 6758 . . . . . . . . 9 (𝑘 = 𝐾 → ((WAtoms‘𝑘)‘𝑑) = (𝑊𝑑))
1615sseq2d 3949 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) ↔ 𝑥 ⊆ (𝑊𝑑)))
1716imbi1d 341 . . . . . . 7 (𝑘 = 𝐾 → ((𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)))
1811, 17raleqbidv 3327 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)))
198, 18rabeqbidv 3410 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)} = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})
205, 19mpteq12dv 5161 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
21 df-dilN 38047 . . . 4 Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}))
2220, 21, 4mptfvmpt 7086 . . 3 (𝐾 ∈ V → (Dil‘𝐾) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
232, 22syl5eq 2791 . 2 (𝐾 ∈ V → 𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
241, 23syl 17 1 (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883  cmpt 5153  cfv 6418  Atomscatm 37204  PSubSpcpsubsp 37437  WAtomscwpointsN 37927  PAutcpautN 37928  DilcdilN 38043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-dilN 38047
This theorem is referenced by:  dilsetN  38094
  Copyright terms: Public domain W3C validator