Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilfsetN Structured version   Visualization version   GIF version

Theorem dilfsetN 39018
Description: The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atomsβ€˜πΎ)
dilset.s 𝑆 = (PSubSpβ€˜πΎ)
dilset.w π‘Š = (WAtomsβ€˜πΎ)
dilset.m 𝑀 = (PAutβ€˜πΎ)
dilset.l 𝐿 = (Dilβ€˜πΎ)
Assertion
Ref Expression
dilfsetN (𝐾 ∈ 𝐡 β†’ 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
Distinct variable groups:   𝐴,𝑑   𝑓,𝑑,π‘₯,𝐾   𝑓,𝑀   π‘₯,𝑆
Allowed substitution hints:   𝐴(π‘₯,𝑓)   𝐡(π‘₯,𝑓,𝑑)   𝑆(𝑓,𝑑)   𝐿(π‘₯,𝑓,𝑑)   𝑀(π‘₯,𝑑)   π‘Š(π‘₯,𝑓,𝑑)

Proof of Theorem dilfsetN
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐡 β†’ 𝐾 ∈ V)
2 dilset.l . . 3 𝐿 = (Dilβ€˜πΎ)
3 fveq2 6891 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
4 dilset.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
53, 4eqtr4di 2790 . . . . 5 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
6 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (PAutβ€˜π‘˜) = (PAutβ€˜πΎ))
7 dilset.m . . . . . . 7 𝑀 = (PAutβ€˜πΎ)
86, 7eqtr4di 2790 . . . . . 6 (π‘˜ = 𝐾 β†’ (PAutβ€˜π‘˜) = 𝑀)
9 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (PSubSpβ€˜π‘˜) = (PSubSpβ€˜πΎ))
10 dilset.s . . . . . . . 8 𝑆 = (PSubSpβ€˜πΎ)
119, 10eqtr4di 2790 . . . . . . 7 (π‘˜ = 𝐾 β†’ (PSubSpβ€˜π‘˜) = 𝑆)
12 fveq2 6891 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (WAtomsβ€˜π‘˜) = (WAtomsβ€˜πΎ))
13 dilset.w . . . . . . . . . . 11 π‘Š = (WAtomsβ€˜πΎ)
1412, 13eqtr4di 2790 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (WAtomsβ€˜π‘˜) = π‘Š)
1514fveq1d 6893 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ ((WAtomsβ€˜π‘˜)β€˜π‘‘) = (π‘Šβ€˜π‘‘))
1615sseq2d 4014 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (π‘₯ βŠ† ((WAtomsβ€˜π‘˜)β€˜π‘‘) ↔ π‘₯ βŠ† (π‘Šβ€˜π‘‘)))
1716imbi1d 341 . . . . . . 7 (π‘˜ = 𝐾 β†’ ((π‘₯ βŠ† ((WAtomsβ€˜π‘˜)β€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)))
1811, 17raleqbidv 3342 . . . . . 6 (π‘˜ = 𝐾 β†’ (βˆ€π‘₯ ∈ (PSubSpβ€˜π‘˜)(π‘₯ βŠ† ((WAtomsβ€˜π‘˜)β€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)))
198, 18rabeqbidv 3449 . . . . 5 (π‘˜ = 𝐾 β†’ {𝑓 ∈ (PAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (PSubSpβ€˜π‘˜)(π‘₯ βŠ† ((WAtomsβ€˜π‘˜)β€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)} = {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)})
205, 19mpteq12dv 5239 . . . 4 (π‘˜ = 𝐾 β†’ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ {𝑓 ∈ (PAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (PSubSpβ€˜π‘˜)(π‘₯ βŠ† ((WAtomsβ€˜π‘˜)β€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
21 df-dilN 38972 . . . 4 Dil = (π‘˜ ∈ V ↦ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ {𝑓 ∈ (PAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (PSubSpβ€˜π‘˜)(π‘₯ βŠ† ((WAtomsβ€˜π‘˜)β€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
2220, 21, 4mptfvmpt 7229 . . 3 (𝐾 ∈ V β†’ (Dilβ€˜πΎ) = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
232, 22eqtrid 2784 . 2 (𝐾 ∈ V β†’ 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
241, 23syl 17 1 (𝐾 ∈ 𝐡 β†’ 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ βˆ€π‘₯ ∈ 𝑆 (π‘₯ βŠ† (π‘Šβ€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474   βŠ† wss 3948   ↦ cmpt 5231  β€˜cfv 6543  Atomscatm 38128  PSubSpcpsubsp 38362  WAtomscwpointsN 38852  PAutcpautN 38853  DilcdilN 38968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-dilN 38972
This theorem is referenced by:  dilsetN  39019
  Copyright terms: Public domain W3C validator