Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilfsetN Structured version   Visualization version   GIF version

Theorem dilfsetN 40146
Description: The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a 𝐴 = (Atoms‘𝐾)
dilset.s 𝑆 = (PSubSp‘𝐾)
dilset.w 𝑊 = (WAtoms‘𝐾)
dilset.m 𝑀 = (PAut‘𝐾)
dilset.l 𝐿 = (Dil‘𝐾)
Assertion
Ref Expression
dilfsetN (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
Distinct variable groups:   𝐴,𝑑   𝑓,𝑑,𝑥,𝐾   𝑓,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓,𝑑)   𝑆(𝑓,𝑑)   𝐿(𝑥,𝑓,𝑑)   𝑀(𝑥,𝑑)   𝑊(𝑥,𝑓,𝑑)

Proof of Theorem dilfsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐾𝐵𝐾 ∈ V)
2 dilset.l . . 3 𝐿 = (Dil‘𝐾)
3 fveq2 6858 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 dilset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2782 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6858 . . . . . . 7 (𝑘 = 𝐾 → (PAut‘𝑘) = (PAut‘𝐾))
7 dilset.m . . . . . . 7 𝑀 = (PAut‘𝐾)
86, 7eqtr4di 2782 . . . . . 6 (𝑘 = 𝐾 → (PAut‘𝑘) = 𝑀)
9 fveq2 6858 . . . . . . . 8 (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾))
10 dilset.s . . . . . . . 8 𝑆 = (PSubSp‘𝐾)
119, 10eqtr4di 2782 . . . . . . 7 (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆)
12 fveq2 6858 . . . . . . . . . . 11 (𝑘 = 𝐾 → (WAtoms‘𝑘) = (WAtoms‘𝐾))
13 dilset.w . . . . . . . . . . 11 𝑊 = (WAtoms‘𝐾)
1412, 13eqtr4di 2782 . . . . . . . . . 10 (𝑘 = 𝐾 → (WAtoms‘𝑘) = 𝑊)
1514fveq1d 6860 . . . . . . . . 9 (𝑘 = 𝐾 → ((WAtoms‘𝑘)‘𝑑) = (𝑊𝑑))
1615sseq2d 3979 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) ↔ 𝑥 ⊆ (𝑊𝑑)))
1716imbi1d 341 . . . . . . 7 (𝑘 = 𝐾 → ((𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥) ↔ (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)))
1811, 17raleqbidv 3319 . . . . . 6 (𝑘 = 𝐾 → (∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)))
198, 18rabeqbidv 3424 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)} = {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)})
205, 19mpteq12dv 5194 . . . 4 (𝑘 = 𝐾 → (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
21 df-dilN 40100 . . . 4 Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}))
2220, 21, 4mptfvmpt 7202 . . 3 (𝐾 ∈ V → (Dil‘𝐾) = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
232, 22eqtrid 2776 . 2 (𝐾 ∈ V → 𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
241, 23syl 17 1 (𝐾𝐵𝐿 = (𝑑𝐴 ↦ {𝑓𝑀 ∣ ∀𝑥𝑆 (𝑥 ⊆ (𝑊𝑑) → (𝑓𝑥) = 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914  cmpt 5188  cfv 6511  Atomscatm 39256  PSubSpcpsubsp 39490  WAtomscwpointsN 39980  PAutcpautN 39981  DilcdilN 40096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-dilN 40100
This theorem is referenced by:  dilsetN  40147
  Copyright terms: Public domain W3C validator