| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dmqss | Structured version Visualization version GIF version | ||
| Description: Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8654) of the relation on its domain is equal to the set. See comments of df-ers 38628 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.) |
| Ref | Expression |
|---|---|
| df-dmqss | ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdmqss 38165 | . 2 class DomainQss | |
| 2 | vx | . . . . . . 7 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 4 | 3 | cdm 5631 | . . . . 5 class dom 𝑥 |
| 5 | 4, 3 | cqs 8647 | . . . 4 class (dom 𝑥 / 𝑥) |
| 6 | vy | . . . . 5 setvar 𝑦 | |
| 7 | 6 | cv 1539 | . . . 4 class 𝑦 |
| 8 | 5, 7 | wceq 1540 | . . 3 wff (dom 𝑥 / 𝑥) = 𝑦 |
| 9 | 8, 2, 6 | copab 5164 | . 2 class {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} |
| 10 | 1, 9 | wceq 1540 | 1 wff DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} |
| Colors of variables: wff setvar class |
| This definition is referenced by: brdmqss 38610 |
| Copyright terms: Public domain | W3C validator |