Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dmqss | Structured version Visualization version GIF version |
Description: Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8531) of the relation on its domain is equal to the set. See comments of df-ers 36814 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.) |
Ref | Expression |
---|---|
df-dmqss | ⊢ DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdmqss 36397 | . 2 class DomainQss | |
2 | vx | . . . . . . 7 setvar 𝑥 | |
3 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
4 | 3 | cdm 5596 | . . . . 5 class dom 𝑥 |
5 | 4, 3 | cqs 8524 | . . . 4 class (dom 𝑥 / 𝑥) |
6 | vy | . . . . 5 setvar 𝑦 | |
7 | 6 | cv 1538 | . . . 4 class 𝑦 |
8 | 5, 7 | wceq 1539 | . . 3 wff (dom 𝑥 / 𝑥) = 𝑦 |
9 | 8, 2, 6 | copab 5143 | . 2 class {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦} |
10 | 1, 9 | wceq 1539 | 1 wff DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: brdmqss 36798 |
Copyright terms: Public domain | W3C validator |