Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdmqss Structured version   Visualization version   GIF version

Theorem brdmqss 38602
Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
brdmqss ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))

Proof of Theorem brdmqss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmqseq 38596 . . . 4 (𝑥 = 𝑅 → (dom 𝑥 / 𝑥) = (dom 𝑅 / 𝑅))
2 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
31, 2eqeqan12d 2754 . . 3 ((𝑥 = 𝑅𝑦 = 𝐴) → ((dom 𝑥 / 𝑥) = 𝑦 ↔ (dom 𝑅 / 𝑅) = 𝐴))
4 df-dmqss 38594 . . 3 DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦}
53, 4brabga 5553 . 2 ((𝑅𝑊𝐴𝑉) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
65ancoms 458 1 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  dom cdm 5700   / cqs 8762   DomainQss cdmqss 38158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769  df-dmqss 38594
This theorem is referenced by:  brdmqssqs  38603  cnvepresdmqss  38608  brparts2  38728
  Copyright terms: Public domain W3C validator