Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdmqss Structured version   Visualization version   GIF version

Theorem brdmqss 37511
Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
brdmqss ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))

Proof of Theorem brdmqss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmqseq 37505 . . . 4 (𝑥 = 𝑅 → (dom 𝑥 / 𝑥) = (dom 𝑅 / 𝑅))
2 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
31, 2eqeqan12d 2746 . . 3 ((𝑥 = 𝑅𝑦 = 𝐴) → ((dom 𝑥 / 𝑥) = 𝑦 ↔ (dom 𝑅 / 𝑅) = 𝐴))
4 df-dmqss 37503 . . 3 DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦}
53, 4brabga 5534 . 2 ((𝑅𝑊𝐴𝑉) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
65ancoms 459 1 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5148  dom cdm 5676   / cqs 8701   DomainQss cdmqss 37061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8704  df-qs 8708  df-dmqss 37503
This theorem is referenced by:  brdmqssqs  37512  cnvepresdmqss  37517  brparts2  37637
  Copyright terms: Public domain W3C validator