![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brdmqss | Structured version Visualization version GIF version |
Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
Ref | Expression |
---|---|
brdmqss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseq 37505 | . . . 4 ⊢ (𝑥 = 𝑅 → (dom 𝑥 / 𝑥) = (dom 𝑅 / 𝑅)) | |
2 | id 22 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
3 | 1, 2 | eqeqan12d 2746 | . . 3 ⊢ ((𝑥 = 𝑅 ∧ 𝑦 = 𝐴) → ((dom 𝑥 / 𝑥) = 𝑦 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
4 | df-dmqss 37503 | . . 3 ⊢ DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦} | |
5 | 3, 4 | brabga 5534 | . 2 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
6 | 5 | ancoms 459 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 dom cdm 5676 / cqs 8701 DomainQss cdmqss 37061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8704 df-qs 8708 df-dmqss 37503 |
This theorem is referenced by: brdmqssqs 37512 cnvepresdmqss 37517 brparts2 37637 |
Copyright terms: Public domain | W3C validator |