![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brdmqss | Structured version Visualization version GIF version |
Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
Ref | Expression |
---|---|
brdmqss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseq 38144 | . . . 4 ⊢ (𝑥 = 𝑅 → (dom 𝑥 / 𝑥) = (dom 𝑅 / 𝑅)) | |
2 | id 22 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
3 | 1, 2 | eqeqan12d 2742 | . . 3 ⊢ ((𝑥 = 𝑅 ∧ 𝑦 = 𝐴) → ((dom 𝑥 / 𝑥) = 𝑦 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
4 | df-dmqss 38142 | . . 3 ⊢ DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦} | |
5 | 3, 4 | brabga 5540 | . 2 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
6 | 5 | ancoms 457 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 dom cdm 5682 / cqs 8730 DomainQss cdmqss 37704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8733 df-qs 8737 df-dmqss 38142 |
This theorem is referenced by: brdmqssqs 38151 cnvepresdmqss 38156 brparts2 38276 |
Copyright terms: Public domain | W3C validator |