| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brdmqss | Structured version Visualization version GIF version | ||
| Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
| Ref | Expression |
|---|---|
| brdmqss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmqseq 38624 | . . . 4 ⊢ (𝑥 = 𝑅 → (dom 𝑥 / 𝑥) = (dom 𝑅 / 𝑅)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
| 3 | 1, 2 | eqeqan12d 2743 | . . 3 ⊢ ((𝑥 = 𝑅 ∧ 𝑦 = 𝐴) → ((dom 𝑥 / 𝑥) = 𝑦 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
| 4 | df-dmqss 38622 | . . 3 ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} | |
| 5 | 3, 4 | brabga 5489 | . 2 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
| 6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 dom cdm 5631 / cqs 8647 DomainQss cdmqss 38185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ec 8650 df-qs 8654 df-dmqss 38622 |
| This theorem is referenced by: brdmqssqs 38631 cnvepresdmqss 38637 brparts2 38757 |
| Copyright terms: Public domain | W3C validator |