Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brdmqss | Structured version Visualization version GIF version |
Description: The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
Ref | Expression |
---|---|
brdmqss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmqseq 36795 | . . . 4 ⊢ (𝑥 = 𝑅 → (dom 𝑥 / 𝑥) = (dom 𝑅 / 𝑅)) | |
2 | id 22 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
3 | 1, 2 | eqeqan12d 2750 | . . 3 ⊢ ((𝑥 = 𝑅 ∧ 𝑦 = 𝐴) → ((dom 𝑥 / 𝑥) = 𝑦 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
4 | df-dmqss 36793 | . . 3 ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} | |
5 | 3, 4 | brabga 5460 | . 2 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
6 | 5 | ancoms 460 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 dom cdm 5600 / cqs 8528 DomainQss cdmqss 36400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-dmqss 36793 |
This theorem is referenced by: brdmqssqs 36802 cnvepresdmqss 36806 |
Copyright terms: Public domain | W3C validator |