|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dmqs | Structured version Visualization version GIF version | ||
| Description: Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 38648. (Contributed by Peter Mazsa, 9-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| df-dmqs | ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wdmqs 38206 | . 2 wff 𝑅 DomainQs 𝐴 | 
| 4 | 2 | cdm 5685 | . . . 4 class dom 𝑅 | 
| 5 | 4, 2 | cqs 8744 | . . 3 class (dom 𝑅 / 𝑅) | 
| 6 | 5, 1 | wceq 1540 | . 2 wff (dom 𝑅 / 𝑅) = 𝐴 | 
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: brdmqssqs 38648 cnvepresdmqs 38654 dferALTV2 38669 dfpart2 38770 | 
| Copyright terms: Public domain | W3C validator |