| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dmqs | Structured version Visualization version GIF version | ||
| Description: Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 38665. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| Ref | Expression |
|---|---|
| df-dmqs | ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wdmqs 38223 | . 2 wff 𝑅 DomainQs 𝐴 |
| 4 | 2 | cdm 5654 | . . . 4 class dom 𝑅 |
| 5 | 4, 2 | cqs 8718 | . . 3 class (dom 𝑅 / 𝑅) |
| 6 | 5, 1 | wceq 1540 | . 2 wff (dom 𝑅 / 𝑅) = 𝐴 |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) |
| Colors of variables: wff setvar class |
| This definition is referenced by: brdmqssqs 38665 cnvepresdmqs 38671 dferALTV2 38686 dfpart2 38787 |
| Copyright terms: Public domain | W3C validator |