MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8749
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8742 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1535 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1535 . . . . . 6 class 𝑥
87, 2cec 8741 . . . . 5 class [𝑥]𝑅
95, 8wceq 1536 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3067 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2711 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1536 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8799  qseq2  8800  0qs  8805  elqsg  8806  qsexg  8813  uniqs  8815  snec  8818  qsinxp  8831  qliftf  8843  quslem  17589  qus0subgbas  19228  pzriprnglem11  21519  pi1xfrf  25099  pi1cof  25105  qusbas2  33413  qsss1  38270  qsresid  38306  uniqsALTV  38310  disjdmqscossss  38784  dfqs2  42256  dfqs3  42257
  Copyright terms: Public domain W3C validator