MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8628
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8621 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1540 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1540 . . . . . 6 class 𝑥
87, 2cec 8620 . . . . 5 class [𝑥]𝑅
95, 8wceq 1541 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3056 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2709 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1541 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8681  qseq2  8682  0qs  8687  elqsg  8688  qsexg  8696  uniqs  8698  snec  8702  qsinxp  8717  qliftf  8729  quslem  17447  qus0subgbas  19111  pzriprnglem11  21429  pi1xfrf  24981  pi1cof  24987  qusbas2  33369  qsss1  38329  qsresid  38365  qseq  38692  disjdmqscossss  38847  dfqs2  42276  dfqs3  42277
  Copyright terms: Public domain W3C validator