MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8769
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8762 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1536 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1536 . . . . . 6 class 𝑥
87, 2cec 8761 . . . . 5 class [𝑥]𝑅
95, 8wceq 1537 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3076 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2717 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1537 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8819  qseq2  8820  0qs  8825  elqsg  8826  qsexg  8833  uniqs  8835  snec  8838  qsinxp  8851  qliftf  8863  quslem  17603  qus0subgbas  19238  pzriprnglem11  21525  pi1xfrf  25105  pi1cof  25111  qusbas2  33399  qsss1  38245  qsresid  38281  uniqsALTV  38285  disjdmqscossss  38759  dfqs2  42232  dfqs3  42233
  Copyright terms: Public domain W3C validator