MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8552
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8545 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1539 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
87, 2cec 8544 . . . . 5 class [𝑥]𝑅
95, 8wceq 1540 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3071 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2714 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1540 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8600  qseq2  8601  elqsg  8605  qsexg  8612  uniqs  8614  snec  8617  qsinxp  8630  qliftf  8642  quslem  17324  pi1xfrf  24288  pi1cof  24294  qsss1  36505  qsresid  36542  uniqsALTV  36546  0qs  36587  disjdmqscossss  37021  dfqs2  40415  dfqs3  40416
  Copyright terms: Public domain W3C validator