MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8723
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8716 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1539 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
87, 2cec 8715 . . . . 5 class [𝑥]𝑅
95, 8wceq 1540 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3060 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2713 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1540 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8773  qseq2  8774  0qs  8779  elqsg  8780  qsexg  8787  uniqs  8789  snec  8792  qsinxp  8805  qliftf  8817  quslem  17555  qus0subgbas  19179  pzriprnglem11  21450  pi1xfrf  25002  pi1cof  25008  qusbas2  33367  qsss1  38253  qsresid  38289  uniqsALTV  38293  disjdmqscossss  38767  dfqs2  42235  dfqs3  42236
  Copyright terms: Public domain W3C validator