MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8462
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8455 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1538 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1538 . . . . . 6 class 𝑥
87, 2cec 8454 . . . . 5 class [𝑥]𝑅
95, 8wceq 1539 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3064 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2715 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1539 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8510  qseq2  8511  elqsg  8515  qsexg  8522  uniqs  8524  snec  8527  qsinxp  8540  qliftf  8552  quslem  17171  pi1xfrf  24122  pi1cof  24128  qsss1  36350  qsresid  36387  uniqsALTV  36391  0qs  36427  dfqs2  40138  dfqs3  40139
  Copyright terms: Public domain W3C validator