MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8637
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8630 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1540 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1540 . . . . . 6 class 𝑥
87, 2cec 8629 . . . . 5 class [𝑥]𝑅
95, 8wceq 1541 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3057 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2711 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1541 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8690  qseq2  8691  0qs  8696  elqsg  8697  qsexg  8705  uniqs  8707  snec  8711  qsinxp  8726  qliftf  8738  quslem  17455  qus0subgbas  19118  pzriprnglem11  21437  pi1xfrf  25000  pi1cof  25006  qusbas2  33415  qsss1  38400  qsresid  38436  qseq  38819  disjdmqscossss  38974  dfqs2  42408  dfqs3  42409
  Copyright terms: Public domain W3C validator