![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version |
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | cqs 8742 | . 2 class (𝐴 / 𝑅) |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1535 | . . . . 5 class 𝑦 |
6 | vx | . . . . . . 7 setvar 𝑥 | |
7 | 6 | cv 1535 | . . . . . 6 class 𝑥 |
8 | 7, 2 | cec 8741 | . . . . 5 class [𝑥]𝑅 |
9 | 5, 8 | wceq 1536 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
10 | 9, 6, 1 | wrex 3067 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
11 | 10, 4 | cab 2711 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
12 | 3, 11 | wceq 1536 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Colors of variables: wff setvar class |
This definition is referenced by: qseq1 8799 qseq2 8800 0qs 8805 elqsg 8806 qsexg 8813 uniqs 8815 snec 8818 qsinxp 8831 qliftf 8843 quslem 17589 qus0subgbas 19228 pzriprnglem11 21519 pi1xfrf 25099 pi1cof 25105 qusbas2 33413 qsss1 38270 qsresid 38306 uniqsALTV 38310 disjdmqscossss 38784 dfqs2 42256 dfqs3 42257 |
Copyright terms: Public domain | W3C validator |