| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version | ||
| Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | cqs 8670 | . 2 class (𝐴 / 𝑅) |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑦 |
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑥 |
| 8 | 7, 2 | cec 8669 | . . . . 5 class [𝑥]𝑅 |
| 9 | 5, 8 | wceq 1540 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
| 10 | 9, 6, 1 | wrex 3053 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
| 11 | 10, 4 | cab 2707 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 12 | 3, 11 | wceq 1540 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Colors of variables: wff setvar class |
| This definition is referenced by: qseq1 8730 qseq2 8731 0qs 8736 elqsg 8737 qsexg 8745 uniqs 8747 snec 8751 qsinxp 8766 qliftf 8778 quslem 17506 qus0subgbas 19130 pzriprnglem11 21401 pi1xfrf 24953 pi1cof 24959 qusbas2 33377 qsss1 38277 qsresid 38313 qseq 38640 disjdmqscossss 38795 dfqs2 42225 dfqs3 42226 |
| Copyright terms: Public domain | W3C validator |