MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8504
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8497 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1538 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1538 . . . . . 6 class 𝑥
87, 2cec 8496 . . . . 5 class [𝑥]𝑅
95, 8wceq 1539 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3065 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2715 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1539 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8552  qseq2  8553  elqsg  8557  qsexg  8564  uniqs  8566  snec  8569  qsinxp  8582  qliftf  8594  quslem  17254  pi1xfrf  24216  pi1cof  24222  qsss1  36423  qsresid  36460  uniqsALTV  36464  0qs  36500  dfqs2  40212  dfqs3  40213
  Copyright terms: Public domain W3C validator