![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version |
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | cqs 8762 | . 2 class (𝐴 / 𝑅) |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1536 | . . . . 5 class 𝑦 |
6 | vx | . . . . . . 7 setvar 𝑥 | |
7 | 6 | cv 1536 | . . . . . 6 class 𝑥 |
8 | 7, 2 | cec 8761 | . . . . 5 class [𝑥]𝑅 |
9 | 5, 8 | wceq 1537 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
10 | 9, 6, 1 | wrex 3076 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
11 | 10, 4 | cab 2717 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
12 | 3, 11 | wceq 1537 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Colors of variables: wff setvar class |
This definition is referenced by: qseq1 8819 qseq2 8820 0qs 8825 elqsg 8826 qsexg 8833 uniqs 8835 snec 8838 qsinxp 8851 qliftf 8863 quslem 17603 qus0subgbas 19238 pzriprnglem11 21525 pi1xfrf 25105 pi1cof 25111 qusbas2 33399 qsss1 38245 qsresid 38281 uniqsALTV 38285 disjdmqscossss 38759 dfqs2 42232 dfqs3 42233 |
Copyright terms: Public domain | W3C validator |