| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version | ||
| Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | cqs 8621 | . 2 class (𝐴 / 𝑅) |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑦 |
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑥 |
| 8 | 7, 2 | cec 8620 | . . . . 5 class [𝑥]𝑅 |
| 9 | 5, 8 | wceq 1541 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
| 10 | 9, 6, 1 | wrex 3056 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
| 11 | 10, 4 | cab 2709 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 12 | 3, 11 | wceq 1541 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Colors of variables: wff setvar class |
| This definition is referenced by: qseq1 8681 qseq2 8682 0qs 8687 elqsg 8688 qsexg 8696 uniqs 8698 snec 8702 qsinxp 8717 qliftf 8729 quslem 17447 qus0subgbas 19111 pzriprnglem11 21429 pi1xfrf 24981 pi1cof 24987 qusbas2 33369 qsss1 38329 qsresid 38365 qseq 38692 disjdmqscossss 38847 dfqs2 42276 dfqs3 42277 |
| Copyright terms: Public domain | W3C validator |