Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version |
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | cqs 8497 | . 2 class (𝐴 / 𝑅) |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1538 | . . . . 5 class 𝑦 |
6 | vx | . . . . . . 7 setvar 𝑥 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑥 |
8 | 7, 2 | cec 8496 | . . . . 5 class [𝑥]𝑅 |
9 | 5, 8 | wceq 1539 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
10 | 9, 6, 1 | wrex 3065 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
11 | 10, 4 | cab 2715 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
12 | 3, 11 | wceq 1539 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Colors of variables: wff setvar class |
This definition is referenced by: qseq1 8552 qseq2 8553 elqsg 8557 qsexg 8564 uniqs 8566 snec 8569 qsinxp 8582 qliftf 8594 quslem 17254 pi1xfrf 24216 pi1cof 24222 qsss1 36423 qsresid 36460 uniqsALTV 36464 0qs 36500 dfqs2 40212 dfqs3 40213 |
Copyright terms: Public domain | W3C validator |