| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version | ||
| Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | cqs 8631 | . 2 class (𝐴 / 𝑅) |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑦 |
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑥 |
| 8 | 7, 2 | cec 8630 | . . . . 5 class [𝑥]𝑅 |
| 9 | 5, 8 | wceq 1540 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
| 10 | 9, 6, 1 | wrex 3053 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
| 11 | 10, 4 | cab 2707 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 12 | 3, 11 | wceq 1540 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Colors of variables: wff setvar class |
| This definition is referenced by: qseq1 8691 qseq2 8692 0qs 8697 elqsg 8698 qsexg 8706 uniqs 8708 snec 8712 qsinxp 8727 qliftf 8739 quslem 17465 qus0subgbas 19095 pzriprnglem11 21416 pi1xfrf 24969 pi1cof 24975 qusbas2 33356 qsss1 38265 qsresid 38301 qseq 38628 disjdmqscossss 38783 dfqs2 42213 dfqs3 42214 |
| Copyright terms: Public domain | W3C validator |