MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8709
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8702 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1541 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1541 . . . . . 6 class 𝑥
87, 2cec 8701 . . . . 5 class [𝑥]𝑅
95, 8wceq 1542 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3071 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2710 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1542 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8757  qseq2  8758  elqsg  8762  qsexg  8769  uniqs  8771  snec  8774  qsinxp  8787  qliftf  8799  quslem  17489  qus0subgbas  19075  pi1xfrf  24569  pi1cof  24575  qusbas2  32517  qsss1  37157  qsresid  37194  uniqsALTV  37198  0qs  37239  disjdmqscossss  37673  dfqs2  41059  dfqs3  41060  pzriprnglem11  46815
  Copyright terms: Public domain W3C validator