| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version | ||
| Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | cqs 8673 | . 2 class (𝐴 / 𝑅) |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑦 |
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑥 |
| 8 | 7, 2 | cec 8672 | . . . . 5 class [𝑥]𝑅 |
| 9 | 5, 8 | wceq 1540 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
| 10 | 9, 6, 1 | wrex 3054 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
| 11 | 10, 4 | cab 2708 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 12 | 3, 11 | wceq 1540 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Colors of variables: wff setvar class |
| This definition is referenced by: qseq1 8733 qseq2 8734 0qs 8739 elqsg 8740 qsexg 8748 uniqs 8750 snec 8754 qsinxp 8769 qliftf 8781 quslem 17513 qus0subgbas 19137 pzriprnglem11 21408 pi1xfrf 24960 pi1cof 24966 qusbas2 33384 qsss1 38284 qsresid 38320 qseq 38647 disjdmqscossss 38802 dfqs2 42232 dfqs3 42233 |
| Copyright terms: Public domain | W3C validator |