![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version |
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | cqs 8702 | . 2 class (𝐴 / 𝑅) |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1541 | . . . . 5 class 𝑦 |
6 | vx | . . . . . . 7 setvar 𝑥 | |
7 | 6 | cv 1541 | . . . . . 6 class 𝑥 |
8 | 7, 2 | cec 8701 | . . . . 5 class [𝑥]𝑅 |
9 | 5, 8 | wceq 1542 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
10 | 9, 6, 1 | wrex 3071 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
11 | 10, 4 | cab 2710 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
12 | 3, 11 | wceq 1542 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
Colors of variables: wff setvar class |
This definition is referenced by: qseq1 8757 qseq2 8758 elqsg 8762 qsexg 8769 uniqs 8771 snec 8774 qsinxp 8787 qliftf 8799 quslem 17489 qus0subgbas 19075 pi1xfrf 24569 pi1cof 24575 qusbas2 32517 qsss1 37157 qsresid 37194 uniqsALTV 37198 0qs 37239 disjdmqscossss 37673 dfqs2 41059 dfqs3 41060 pzriprnglem11 46815 |
Copyright terms: Public domain | W3C validator |