MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8677
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8670 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1539 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
87, 2cec 8669 . . . . 5 class [𝑥]𝑅
95, 8wceq 1540 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3053 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2707 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1540 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8730  qseq2  8731  0qs  8736  elqsg  8737  qsexg  8745  uniqs  8747  snec  8751  qsinxp  8766  qliftf  8778  quslem  17506  qus0subgbas  19130  pzriprnglem11  21401  pi1xfrf  24953  pi1cof  24959  qusbas2  33377  qsss1  38277  qsresid  38313  qseq  38640  disjdmqscossss  38795  dfqs2  42225  dfqs3  42226
  Copyright terms: Public domain W3C validator