| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-qs | Structured version Visualization version GIF version | ||
| Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | cqs 8630 | . 2 class (𝐴 / 𝑅) |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑦 |
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑥 |
| 8 | 7, 2 | cec 8629 | . . . . 5 class [𝑥]𝑅 |
| 9 | 5, 8 | wceq 1541 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
| 10 | 9, 6, 1 | wrex 3057 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
| 11 | 10, 4 | cab 2711 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 12 | 3, 11 | wceq 1541 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Colors of variables: wff setvar class |
| This definition is referenced by: qseq1 8690 qseq2 8691 0qs 8696 elqsg 8697 qsexg 8705 uniqs 8707 snec 8711 qsinxp 8726 qliftf 8738 quslem 17455 qus0subgbas 19118 pzriprnglem11 21437 pi1xfrf 25000 pi1cof 25006 qusbas2 33415 qsss1 38400 qsresid 38436 qseq 38819 disjdmqscossss 38974 dfqs2 42408 dfqs3 42409 |
| Copyright terms: Public domain | W3C validator |