MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-qs Structured version   Visualization version   GIF version

Definition df-qs 8638
Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cqs 8631 . 2 class (𝐴 / 𝑅)
4 vy . . . . . 6 setvar 𝑦
54cv 1539 . . . . 5 class 𝑦
6 vx . . . . . . 7 setvar 𝑥
76cv 1539 . . . . . 6 class 𝑥
87, 2cec 8630 . . . . 5 class [𝑥]𝑅
95, 8wceq 1540 . . . 4 wff 𝑦 = [𝑥]𝑅
109, 6, 1wrex 3053 . . 3 wff 𝑥𝐴 𝑦 = [𝑥]𝑅
1110, 4cab 2707 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
123, 11wceq 1540 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
Colors of variables: wff setvar class
This definition is referenced by:  qseq1  8691  qseq2  8692  0qs  8697  elqsg  8698  qsexg  8706  uniqs  8708  snec  8712  qsinxp  8727  qliftf  8739  quslem  17465  qus0subgbas  19095  pzriprnglem11  21416  pi1xfrf  24969  pi1cof  24975  qusbas2  33356  qsss1  38265  qsresid  38301  qseq  38628  disjdmqscossss  38783  dfqs2  42213  dfqs3  42214
  Copyright terms: Public domain W3C validator