Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund3 Structured version   Visualization version   GIF version

Theorem refrelredund3 38753
Description: The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38628) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
refrelredund3 redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
Distinct variable group:   𝑥,𝑅

Proof of Theorem refrelredund3
StepHypRef Expression
1 refrelredund2 38752 . 2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
2 idrefALT 6064 . . . 4 (( I ↾ dom 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)
32anbi1i 624 . . 3 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅))
43redundpbi1 38747 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) ↔ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅))
51, 4mpbi 230 1 redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wral 3048  wss 3898   class class class wbr 5093   I cid 5513  dom cdm 5619  cres 5621  Rel wrel 5624   RefRel wrefrel 38248   EqvRel weqvrel 38259   redund wredundp 38264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-refrel 38624  df-symrel 38656  df-eqvrel 38701  df-redundp 38741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator