| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelredund3 | Structured version Visualization version GIF version | ||
| Description: The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38539) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| Ref | Expression |
|---|---|
| refrelredund3 | ⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelredund2 38659 | . 2 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | |
| 2 | idrefALT 6105 | . . . 4 ⊢ (( I ↾ dom 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅)) |
| 4 | 3 | redundpbi1 38654 | . 2 ⊢ ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) ↔ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∀wral 3052 ⊆ wss 3931 class class class wbr 5124 I cid 5552 dom cdm 5659 ↾ cres 5661 Rel wrel 5664 RefRel wrefrel 38210 EqvRel weqvrel 38221 redund wredundp 38226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-refrel 38535 df-symrel 38567 df-eqvrel 38608 df-redundp 38648 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |