Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelredund3 | Structured version Visualization version GIF version |
Description: The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 36561) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
refrelredund3 | ⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelredund2 36676 | . 2 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | |
2 | idrefALT 6007 | . . . 4 ⊢ (( I ↾ dom 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥) | |
3 | 2 | anbi1i 623 | . . 3 ⊢ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅)) |
4 | 3 | redundpbi1 36671 | . 2 ⊢ ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) ↔ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)) |
5 | 1, 4 | mpbi 229 | 1 ⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∀wral 3063 ⊆ wss 3883 class class class wbr 5070 I cid 5479 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 RefRel wrefrel 36266 EqvRel weqvrel 36277 redund wredundp 36282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-refrel 36557 df-symrel 36585 df-eqvrel 36625 df-redundp 36665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |