Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund3 Structured version   Visualization version   GIF version

Theorem refrelredund3 38639
Description: The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 38518) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
refrelredund3 redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
Distinct variable group:   𝑥,𝑅

Proof of Theorem refrelredund3
StepHypRef Expression
1 refrelredund2 38638 . 2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
2 idrefALT 6130 . . . 4 (( I ↾ dom 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)
32anbi1i 624 . . 3 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅))
43redundpbi1 38633 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) ↔ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅))
51, 4mpbi 230 1 redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wral 3060  wss 3950   class class class wbr 5142   I cid 5576  dom cdm 5684  cres 5686  Rel wrel 5689   RefRel wrefrel 38189   EqvRel weqvrel 38200   redund wredundp 38205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-refrel 38514  df-symrel 38546  df-eqvrel 38587  df-redundp 38627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator