MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn Structured version   Visualization version   GIF version

Theorem isdomn 20621
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b 𝐵 = (Base‘𝑅)
isdomn.t · = (.r𝑅)
isdomn.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isdomn
Dummy variables 𝑏 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6837 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
2 fveq2 6822 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 isdomn.b . . . 4 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2784 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
5 fvexd 6837 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) ∈ V)
6 fveq2 6822 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
76adantr 480 . . . . 5 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = (0g𝑅))
8 isdomn.z . . . . 5 0 = (0g𝑅)
97, 8eqtr4di 2784 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = 0 )
10 simplr 768 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵)
11 fveq2 6822 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
12 isdomn.t . . . . . . . . . 10 · = (.r𝑅)
1311, 12eqtr4di 2784 . . . . . . . . 9 (𝑟 = 𝑅 → (.r𝑟) = · )
1413oveqdr 7374 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
15 id 22 . . . . . . . 8 (𝑧 = 0𝑧 = 0 )
1614, 15eqeqan12d 2745 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥(.r𝑟)𝑦) = 𝑧 ↔ (𝑥 · 𝑦) = 0 ))
17 eqeq2 2743 . . . . . . . . 9 (𝑧 = 0 → (𝑥 = 𝑧𝑥 = 0 ))
18 eqeq2 2743 . . . . . . . . 9 (𝑧 = 0 → (𝑦 = 𝑧𝑦 = 0 ))
1917, 18orbi12d 918 . . . . . . . 8 (𝑧 = 0 → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
2019adantl 481 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
2116, 20imbi12d 344 . . . . . 6 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
2210, 21raleqbidv 3312 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
2310, 22raleqbidv 3312 . . . 4 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
245, 9, 23sbcied2 3786 . . 3 ((𝑟 = 𝑅𝑏 = 𝐵) → ([(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
251, 4, 24sbcied2 3786 . 2 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
26 df-domn 20611 . 2 Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧))}
2725, 26elrab2 3650 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  [wsbc 3741  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  0gc0g 17343  NzRingcnzr 20428  Domncdomn 20608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-domn 20611
This theorem is referenced by:  domnnzr  20622  domneq0  20624  isdomn2  20627  isdomn2OLD  20628  isdomn3  20631  isdomn4  20632  opprdomnb  20633  abvn0b  20752  znfld  21498  ply1domn  26057  fta1b  26105  domnpropd  33241  subrdom  33249  prmidl0  33413  qsidomlem2  33416
  Copyright terms: Public domain W3C validator