| Step | Hyp | Ref
| Expression |
| 1 | | fvexd 6921 |
. . 3
⊢ (𝑟 = 𝑅 → (Base‘𝑟) ∈ V) |
| 2 | | fveq2 6906 |
. . . 4
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 3 | | isdomn.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 4 | 2, 3 | eqtr4di 2795 |
. . 3
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 5 | | fvexd 6921 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (0g‘𝑟) ∈ V) |
| 6 | | fveq2 6906 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (0g‘𝑟) = (0g‘𝑅)) |
| 8 | | isdomn.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
| 9 | 7, 8 | eqtr4di 2795 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (0g‘𝑟) = 0 ) |
| 10 | | simplr 769 |
. . . . 5
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵) |
| 11 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
| 12 | | isdomn.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑅) |
| 13 | 11, 12 | eqtr4di 2795 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
| 14 | 13 | oveqdr 7459 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) |
| 15 | | id 22 |
. . . . . . . 8
⊢ (𝑧 = 0 → 𝑧 = 0 ) |
| 16 | 14, 15 | eqeqan12d 2751 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥(.r‘𝑟)𝑦) = 𝑧 ↔ (𝑥 · 𝑦) = 0 )) |
| 17 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑧 = 0 → (𝑥 = 𝑧 ↔ 𝑥 = 0 )) |
| 18 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑧 = 0 → (𝑦 = 𝑧 ↔ 𝑦 = 0 )) |
| 19 | 17, 18 | orbi12d 919 |
. . . . . . . 8
⊢ (𝑧 = 0 → ((𝑥 = 𝑧 ∨ 𝑦 = 𝑧) ↔ (𝑥 = 0 ∨ 𝑦 = 0 ))) |
| 20 | 19 | adantl 481 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥 = 𝑧 ∨ 𝑦 = 𝑧) ↔ (𝑥 = 0 ∨ 𝑦 = 0 ))) |
| 21 | 16, 20 | imbi12d 344 |
. . . . . 6
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 22 | 10, 21 | raleqbidv 3346 |
. . . . 5
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 23 | 10, 22 | raleqbidv 3346 |
. . . 4
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 24 | 5, 9, 23 | sbcied2 3833 |
. . 3
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → ([(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 25 | 1, 4, 24 | sbcied2 3833 |
. 2
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 26 | | df-domn 20695 |
. 2
⊢ Domn =
{𝑟 ∈ NzRing ∣
[(Base‘𝑟) /
𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} |
| 27 | 25, 26 | elrab2 3695 |
1
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |