Step | Hyp | Ref
| Expression |
1 | | fvexd 6771 |
. . 3
⊢ (𝑟 = 𝑅 → (Base‘𝑟) ∈ V) |
2 | | fveq2 6756 |
. . . 4
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
3 | | isdomn.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
4 | 2, 3 | eqtr4di 2797 |
. . 3
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
5 | | fvexd 6771 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (0g‘𝑟) ∈ V) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (0g‘𝑟) = (0g‘𝑅)) |
8 | | isdomn.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
9 | 7, 8 | eqtr4di 2797 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (0g‘𝑟) = 0 ) |
10 | | simplr 765 |
. . . . 5
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵) |
11 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
12 | | isdomn.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑅) |
13 | 11, 12 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
14 | 13 | oveqdr 7283 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) |
15 | | id 22 |
. . . . . . . 8
⊢ (𝑧 = 0 → 𝑧 = 0 ) |
16 | 14, 15 | eqeqan12d 2752 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥(.r‘𝑟)𝑦) = 𝑧 ↔ (𝑥 · 𝑦) = 0 )) |
17 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑧 = 0 → (𝑥 = 𝑧 ↔ 𝑥 = 0 )) |
18 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑧 = 0 → (𝑦 = 𝑧 ↔ 𝑦 = 0 )) |
19 | 17, 18 | orbi12d 915 |
. . . . . . . 8
⊢ (𝑧 = 0 → ((𝑥 = 𝑧 ∨ 𝑦 = 𝑧) ↔ (𝑥 = 0 ∨ 𝑦 = 0 ))) |
20 | 19 | adantl 481 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥 = 𝑧 ∨ 𝑦 = 𝑧) ↔ (𝑥 = 0 ∨ 𝑦 = 0 ))) |
21 | 16, 20 | imbi12d 344 |
. . . . . 6
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
22 | 10, 21 | raleqbidv 3327 |
. . . . 5
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
23 | 10, 22 | raleqbidv 3327 |
. . . 4
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
24 | 5, 9, 23 | sbcied2 3758 |
. . 3
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → ([(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
25 | 1, 4, 24 | sbcied2 3758 |
. 2
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
26 | | df-domn 20468 |
. 2
⊢ Domn =
{𝑟 ∈ NzRing ∣
[(Base‘𝑟) /
𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} |
27 | 25, 26 | elrab2 3620 |
1
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |