MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn Structured version   Visualization version   GIF version

Theorem isdomn 20565
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b 𝐵 = (Base‘𝑅)
isdomn.t · = (.r𝑅)
isdomn.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isdomn
Dummy variables 𝑏 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6789 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
2 fveq2 6774 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 isdomn.b . . . 4 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2796 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
5 fvexd 6789 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) ∈ V)
6 fveq2 6774 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
76adantr 481 . . . . 5 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = (0g𝑅))
8 isdomn.z . . . . 5 0 = (0g𝑅)
97, 8eqtr4di 2796 . . . 4 ((𝑟 = 𝑅𝑏 = 𝐵) → (0g𝑟) = 0 )
10 simplr 766 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵)
11 fveq2 6774 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
12 isdomn.t . . . . . . . . . 10 · = (.r𝑅)
1311, 12eqtr4di 2796 . . . . . . . . 9 (𝑟 = 𝑅 → (.r𝑟) = · )
1413oveqdr 7303 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
15 id 22 . . . . . . . 8 (𝑧 = 0𝑧 = 0 )
1614, 15eqeqan12d 2752 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥(.r𝑟)𝑦) = 𝑧 ↔ (𝑥 · 𝑦) = 0 ))
17 eqeq2 2750 . . . . . . . . 9 (𝑧 = 0 → (𝑥 = 𝑧𝑥 = 0 ))
18 eqeq2 2750 . . . . . . . . 9 (𝑧 = 0 → (𝑦 = 𝑧𝑦 = 0 ))
1917, 18orbi12d 916 . . . . . . . 8 (𝑧 = 0 → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
2019adantl 482 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → ((𝑥 = 𝑧𝑦 = 𝑧) ↔ (𝑥 = 0𝑦 = 0 )))
2116, 20imbi12d 345 . . . . . 6 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
2210, 21raleqbidv 3336 . . . . 5 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
2310, 22raleqbidv 3336 . . . 4 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑧 = 0 ) → (∀𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
245, 9, 23sbcied2 3763 . . 3 ((𝑟 = 𝑅𝑏 = 𝐵) → ([(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
251, 4, 24sbcied2 3763 . 2 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
26 df-domn 20555 . 2 Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧))}
2725, 26elrab2 3627 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  [wsbc 3716  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  0gc0g 17150  NzRingcnzr 20528  Domncdomn 20551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-domn 20555
This theorem is referenced by:  domnnzr  20566  domneq0  20568  isdomn2  20570  opprdomn  20572  abvn0b  20573  znfld  20768  ply1domn  25288  fta1b  25334  prmidl0  31626  qsidomlem2  31629  isdomn4  40172  isdomn3  41029
  Copyright terms: Public domain W3C validator