| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-idom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| df-idom | ⊢ IDomn = (CRing ∩ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidom 20609 | . 2 class IDomn | |
| 2 | ccrg 20150 | . . 3 class CRing | |
| 3 | cdomn 20608 | . . 3 class Domn | |
| 4 | 2, 3 | cin 3916 | . 2 class (CRing ∩ Domn) |
| 5 | 1, 4 | wceq 1540 | 1 wff IDomn = (CRing ∩ Domn) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isidom 20641 idomdomd 20642 idomcringd 20643 idomrcanOLD 33239 unitpidl1 33402 prmidl0 33428 mxidlirredi 33449 |
| Copyright terms: Public domain | W3C validator |