| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-idom | Structured version Visualization version GIF version | ||
| Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| df-idom | ⊢ IDomn = (CRing ∩ Domn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidom 20608 | . 2 class IDomn | |
| 2 | ccrg 20152 | . . 3 class CRing | |
| 3 | cdomn 20607 | . . 3 class Domn | |
| 4 | 2, 3 | cin 3896 | . 2 class (CRing ∩ Domn) |
| 5 | 1, 4 | wceq 1541 | 1 wff IDomn = (CRing ∩ Domn) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isidom 20640 idomdomd 20641 idomcringd 20642 idomrcanOLD 33248 unitpidl1 33389 prmidl0 33415 mxidlirredi 33436 |
| Copyright terms: Public domain | W3C validator |