![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-idom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
df-idom | ⊢ IDomn = (CRing ∩ Domn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cidom 20715 | . 2 class IDomn | |
2 | ccrg 20261 | . . 3 class CRing | |
3 | cdomn 20714 | . . 3 class Domn | |
4 | 2, 3 | cin 3975 | . 2 class (CRing ∩ Domn) |
5 | 1, 4 | wceq 1537 | 1 wff IDomn = (CRing ∩ Domn) |
Colors of variables: wff setvar class |
This definition is referenced by: isidom 20747 idomdomd 20748 idomcringd 20749 idomrcanOLD 33251 unitpidl1 33417 prmidl0 33443 mxidlirredi 33464 |
Copyright terms: Public domain | W3C validator |