MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-idom Structured version   Visualization version   GIF version

Definition df-idom 20605
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
df-idom IDomn = (CRing ∩ Domn)

Detailed syntax breakdown of Definition df-idom
StepHypRef Expression
1 cidom 20602 . 2 class IDomn
2 ccrg 20143 . . 3 class CRing
3 cdomn 20601 . . 3 class Domn
42, 3cin 3913 . 2 class (CRing ∩ Domn)
51, 4wceq 1540 1 wff IDomn = (CRing ∩ Domn)
Colors of variables: wff setvar class
This definition is referenced by:  isidom  20634  idomdomd  20635  idomcringd  20636  idomrcanOLD  33232  unitpidl1  33395  prmidl0  33421  mxidlirredi  33442
  Copyright terms: Public domain W3C validator