Detailed syntax breakdown of Definition df-dprd
| Step | Hyp | Ref
| Expression |
| 1 | | cdprd 20013 |
. 2
class
DProd |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cgrp 18951 |
. . 3
class
Grp |
| 5 | | vh |
. . . . . . . 8
setvar ℎ |
| 6 | 5 | cv 1539 |
. . . . . . 7
class ℎ |
| 7 | 6 | cdm 5685 |
. . . . . 6
class dom ℎ |
| 8 | 2 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 9 | | csubg 19138 |
. . . . . . 7
class
SubGrp |
| 10 | 8, 9 | cfv 6561 |
. . . . . 6
class
(SubGrp‘𝑔) |
| 11 | 7, 10, 6 | wf 6557 |
. . . . 5
wff ℎ:dom ℎ⟶(SubGrp‘𝑔) |
| 12 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 13 | 12 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 14 | 13, 6 | cfv 6561 |
. . . . . . . . 9
class (ℎ‘𝑥) |
| 15 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 17 | 16, 6 | cfv 6561 |
. . . . . . . . . 10
class (ℎ‘𝑦) |
| 18 | | ccntz 19333 |
. . . . . . . . . . 11
class
Cntz |
| 19 | 8, 18 | cfv 6561 |
. . . . . . . . . 10
class
(Cntz‘𝑔) |
| 20 | 17, 19 | cfv 6561 |
. . . . . . . . 9
class
((Cntz‘𝑔)‘(ℎ‘𝑦)) |
| 21 | 14, 20 | wss 3951 |
. . . . . . . 8
wff (ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) |
| 22 | 13 | csn 4626 |
. . . . . . . . 9
class {𝑥} |
| 23 | 7, 22 | cdif 3948 |
. . . . . . . 8
class (dom
ℎ ∖ {𝑥}) |
| 24 | 21, 15, 23 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
(dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) |
| 25 | 6, 23 | cima 5688 |
. . . . . . . . . . 11
class (ℎ “ (dom ℎ ∖ {𝑥})) |
| 26 | 25 | cuni 4907 |
. . . . . . . . . 10
class ∪ (ℎ
“ (dom ℎ ∖
{𝑥})) |
| 27 | | cmrc 17626 |
. . . . . . . . . . 11
class
mrCls |
| 28 | 10, 27 | cfv 6561 |
. . . . . . . . . 10
class
(mrCls‘(SubGrp‘𝑔)) |
| 29 | 26, 28 | cfv 6561 |
. . . . . . . . 9
class
((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥}))) |
| 30 | 14, 29 | cin 3950 |
. . . . . . . 8
class ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) |
| 31 | | c0g 17484 |
. . . . . . . . . 10
class
0g |
| 32 | 8, 31 | cfv 6561 |
. . . . . . . . 9
class
(0g‘𝑔) |
| 33 | 32 | csn 4626 |
. . . . . . . 8
class
{(0g‘𝑔)} |
| 34 | 30, 33 | wceq 1540 |
. . . . . . 7
wff ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)} |
| 35 | 24, 34 | wa 395 |
. . . . . 6
wff
(∀𝑦 ∈
(dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}) |
| 36 | 35, 12, 7 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈ dom
ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}) |
| 37 | 11, 36 | wa 395 |
. . . 4
wff (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)})) |
| 38 | 37, 5 | cab 2714 |
. . 3
class {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))} |
| 39 | | vf |
. . . . 5
setvar 𝑓 |
| 40 | | cfsupp 9401 |
. . . . . . 7
class
finSupp |
| 41 | 6, 32, 40 | wbr 5143 |
. . . . . 6
wff ℎ finSupp
(0g‘𝑔) |
| 42 | 3 | cv 1539 |
. . . . . . . 8
class 𝑠 |
| 43 | 42 | cdm 5685 |
. . . . . . 7
class dom 𝑠 |
| 44 | 13, 42 | cfv 6561 |
. . . . . . 7
class (𝑠‘𝑥) |
| 45 | 12, 43, 44 | cixp 8937 |
. . . . . 6
class X𝑥 ∈
dom 𝑠(𝑠‘𝑥) |
| 46 | 41, 5, 45 | crab 3436 |
. . . . 5
class {ℎ ∈ X𝑥 ∈
dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} |
| 47 | 39 | cv 1539 |
. . . . . 6
class 𝑓 |
| 48 | | cgsu 17485 |
. . . . . 6
class
Σg |
| 49 | 8, 47, 48 | co 7431 |
. . . . 5
class (𝑔 Σg
𝑓) |
| 50 | 39, 46, 49 | cmpt 5225 |
. . . 4
class (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) |
| 51 | 50 | crn 5686 |
. . 3
class ran
(𝑓 ∈ {ℎ ∈ X𝑥 ∈
dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) |
| 52 | 2, 3, 4, 38, 51 | cmpo 7433 |
. 2
class (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
| 53 | 1, 52 | wceq 1540 |
1
wff DProd =
(𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |