| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version | ||
| Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| reldmdprd | ⊢ Rel dom DProd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dprd 19978 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
| 2 | 1 | reldmmpo 7541 | 1 ⊢ Rel dom DProd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2713 ∀wral 3051 {crab 3415 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 {csn 4601 ∪ cuni 4883 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 “ cima 5657 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Xcixp 8911 finSupp cfsupp 9373 0gc0g 17453 Σg cgsu 17454 mrClscmrc 17595 Grpcgrp 18916 SubGrpcsubg 19103 Cntzccntz 19298 DProd cdprd 19976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-oprab 7409 df-mpo 7410 df-dprd 19978 |
| This theorem is referenced by: dprddomprc 19983 dprdval0prc 19985 dprdval 19986 dprdgrp 19988 dprdf 19989 dprdssv 19999 subgdmdprd 20017 dprd2da 20025 dpjfval 20038 |
| Copyright terms: Public domain | W3C validator |