| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version | ||
| Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| reldmdprd | ⊢ Rel dom DProd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dprd 19917 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
| 2 | 1 | reldmmpo 7489 | 1 ⊢ Rel dom DProd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 {cab 2711 ∀wral 3048 {crab 3396 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 {csn 4577 ∪ cuni 4860 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5621 ran crn 5622 “ cima 5624 Rel wrel 5626 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Xcixp 8831 finSupp cfsupp 9256 0gc0g 17350 Σg cgsu 17351 mrClscmrc 17493 Grpcgrp 18854 SubGrpcsubg 19041 Cntzccntz 19235 DProd cdprd 19915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-oprab 7359 df-mpo 7360 df-dprd 19917 |
| This theorem is referenced by: dprddomprc 19922 dprdval0prc 19924 dprdval 19925 dprdgrp 19927 dprdf 19928 dprdssv 19938 subgdmdprd 19956 dprd2da 19964 dpjfval 19977 |
| Copyright terms: Public domain | W3C validator |