Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version |
Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
reldmdprd | ⊢ Rel dom DProd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dprd 19239 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
2 | 1 | reldmmpo 7303 | 1 ⊢ Rel dom DProd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 {cab 2717 ∀wral 3054 {crab 3058 ∖ cdif 3841 ∩ cin 3843 ⊆ wss 3844 {csn 4517 ∪ cuni 4797 class class class wbr 5031 ↦ cmpt 5111 dom cdm 5526 ran crn 5527 “ cima 5529 Rel wrel 5531 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 Xcixp 8510 finSupp cfsupp 8909 0gc0g 16819 Σg cgsu 16820 mrClscmrc 16960 Grpcgrp 18222 SubGrpcsubg 18394 Cntzccntz 18566 DProd cdprd 19237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-v 3401 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-br 5032 df-opab 5094 df-xp 5532 df-rel 5533 df-dm 5536 df-oprab 7177 df-mpo 7178 df-dprd 19239 |
This theorem is referenced by: dprddomprc 19244 dprdval0prc 19246 dprdval 19247 dprdgrp 19249 dprdf 19250 dprdssv 19260 subgdmdprd 19278 dprd2da 19286 dpjfval 19299 |
Copyright terms: Public domain | W3C validator |