MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmdprd Structured version   Visualization version   GIF version

Theorem reldmdprd 19600
Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Assertion
Ref Expression
reldmdprd Rel dom DProd

Proof of Theorem reldmdprd
Dummy variables 𝑔 𝑓 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dprd 19598 . 2 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
21reldmmpo 7408 1 Rel dom DProd
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  {cab 2715  wral 3064  {crab 3068  cdif 3884  cin 3886  wss 3887  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cima 5592  Rel wrel 5594  wf 6429  cfv 6433  (class class class)co 7275  Xcixp 8685   finSupp cfsupp 9128  0gc0g 17150   Σg cgsu 17151  mrClscmrc 17292  Grpcgrp 18577  SubGrpcsubg 18749  Cntzccntz 18921   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-oprab 7279  df-mpo 7280  df-dprd 19598
This theorem is referenced by:  dprddomprc  19603  dprdval0prc  19605  dprdval  19606  dprdgrp  19608  dprdf  19609  dprdssv  19619  subgdmdprd  19637  dprd2da  19645  dpjfval  19658
  Copyright terms: Public domain W3C validator