MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmdprd Structured version   Visualization version   GIF version

Theorem reldmdprd 19906
Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Assertion
Ref Expression
reldmdprd Rel dom DProd

Proof of Theorem reldmdprd
Dummy variables 𝑔 𝑓 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dprd 19904 . 2 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
21reldmmpo 7475 1 Rel dom DProd
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  {cab 2709  wral 3047  {crab 3395  cdif 3894  cin 3896  wss 3897  {csn 4571   cuni 4854   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  cima 5614  Rel wrel 5616  wf 6472  cfv 6476  (class class class)co 7341  Xcixp 8816   finSupp cfsupp 9240  0gc0g 17338   Σg cgsu 17339  mrClscmrc 17480  Grpcgrp 18841  SubGrpcsubg 19028  Cntzccntz 19222   DProd cdprd 19902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-dm 5621  df-oprab 7345  df-mpo 7346  df-dprd 19904
This theorem is referenced by:  dprddomprc  19909  dprdval0prc  19911  dprdval  19912  dprdgrp  19914  dprdf  19915  dprdssv  19925  subgdmdprd  19943  dprd2da  19951  dpjfval  19964
  Copyright terms: Public domain W3C validator