Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version |
Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
reldmdprd | ⊢ Rel dom DProd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dprd 19513 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
2 | 1 | reldmmpo 7386 | 1 ⊢ Rel dom DProd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 {cab 2715 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ran crn 5581 “ cima 5583 Rel wrel 5585 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Xcixp 8643 finSupp cfsupp 9058 0gc0g 17067 Σg cgsu 17068 mrClscmrc 17209 Grpcgrp 18492 SubGrpcsubg 18664 Cntzccntz 18836 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-oprab 7259 df-mpo 7260 df-dprd 19513 |
This theorem is referenced by: dprddomprc 19518 dprdval0prc 19520 dprdval 19521 dprdgrp 19523 dprdf 19524 dprdssv 19534 subgdmdprd 19552 dprd2da 19560 dpjfval 19573 |
Copyright terms: Public domain | W3C validator |