![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version |
Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
reldmdprd | ⊢ Rel dom DProd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dprd 20039 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom DProd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 {cab 2717 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 “ cima 5703 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Xcixp 8955 finSupp cfsupp 9431 0gc0g 17499 Σg cgsu 17500 mrClscmrc 17641 Grpcgrp 18973 SubGrpcsubg 19160 Cntzccntz 19355 DProd cdprd 20037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-dprd 20039 |
This theorem is referenced by: dprddomprc 20044 dprdval0prc 20046 dprdval 20047 dprdgrp 20049 dprdf 20050 dprdssv 20060 subgdmdprd 20078 dprd2da 20086 dpjfval 20099 |
Copyright terms: Public domain | W3C validator |