| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version | ||
| Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| reldmdprd | ⊢ Rel dom DProd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dprd 19927 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom DProd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 {cab 2707 ∀wral 3044 {crab 3405 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 “ cima 5641 Rel wrel 5643 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Xcixp 8870 finSupp cfsupp 9312 0gc0g 17402 Σg cgsu 17403 mrClscmrc 17544 Grpcgrp 18865 SubGrpcsubg 19052 Cntzccntz 19247 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-dprd 19927 |
| This theorem is referenced by: dprddomprc 19932 dprdval0prc 19934 dprdval 19935 dprdgrp 19937 dprdf 19938 dprdssv 19948 subgdmdprd 19966 dprd2da 19974 dpjfval 19987 |
| Copyright terms: Public domain | W3C validator |