![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version |
Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
Ref | Expression |
---|---|
reldmdprd | ⊢ Rel dom DProd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dprd 20030 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
2 | 1 | reldmmpo 7567 | 1 ⊢ Rel dom DProd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 {cab 2712 ∀wral 3059 {crab 3433 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 {csn 4631 ∪ cuni 4912 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ran crn 5690 “ cima 5692 Rel wrel 5694 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Xcixp 8936 finSupp cfsupp 9399 0gc0g 17486 Σg cgsu 17487 mrClscmrc 17628 Grpcgrp 18964 SubGrpcsubg 19151 Cntzccntz 19346 DProd cdprd 20028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-oprab 7435 df-mpo 7436 df-dprd 20030 |
This theorem is referenced by: dprddomprc 20035 dprdval0prc 20037 dprdval 20038 dprdgrp 20040 dprdf 20041 dprdssv 20051 subgdmdprd 20069 dprd2da 20077 dpjfval 20090 |
Copyright terms: Public domain | W3C validator |