MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmdprd Structured version   Visualization version   GIF version

Theorem reldmdprd 19122
Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Assertion
Ref Expression
reldmdprd Rel dom DProd

Proof of Theorem reldmdprd
Dummy variables 𝑔 𝑓 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dprd 19120 . 2 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
21reldmmpo 7288 1 Rel dom DProd
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1536  {cab 2802  wral 3141  {crab 3145  cdif 3936  cin 3938  wss 3939  {csn 4570   cuni 4841   class class class wbr 5069  cmpt 5149  dom cdm 5558  ran crn 5559  cima 5561  Rel wrel 5563  wf 6354  cfv 6358  (class class class)co 7159  Xcixp 8464   finSupp cfsupp 8836  0gc0g 16716   Σg cgsu 16717  mrClscmrc 16857  Grpcgrp 18106  SubGrpcsubg 18276  Cntzccntz 18448   DProd cdprd 19118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-dm 5568  df-oprab 7163  df-mpo 7164  df-dprd 19120
This theorem is referenced by:  dprddomprc  19125  dprdval0prc  19127  dprdval  19128  dprdgrp  19130  dprdf  19131  dprdssv  19141  subgdmdprd  19159  dprd2da  19167  dpjfval  19180
  Copyright terms: Public domain W3C validator