| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmdprd | Structured version Visualization version GIF version | ||
| Description: The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
| Ref | Expression |
|---|---|
| reldmdprd | ⊢ Rel dom DProd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dprd 19904 | . 2 ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | |
| 2 | 1 | reldmmpo 7475 | 1 ⊢ Rel dom DProd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 {cab 2709 ∀wral 3047 {crab 3395 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 {csn 4571 ∪ cuni 4854 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ran crn 5612 “ cima 5614 Rel wrel 5616 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Xcixp 8816 finSupp cfsupp 9240 0gc0g 17338 Σg cgsu 17339 mrClscmrc 17480 Grpcgrp 18841 SubGrpcsubg 19028 Cntzccntz 19222 DProd cdprd 19902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-dm 5621 df-oprab 7345 df-mpo 7346 df-dprd 19904 |
| This theorem is referenced by: dprddomprc 19909 dprdval0prc 19911 dprdval 19912 dprdgrp 19914 dprdf 19915 dprdssv 19925 subgdmdprd 19943 dprd2da 19951 dpjfval 19964 |
| Copyright terms: Public domain | W3C validator |