![]() |
Metamath
Proof Explorer Theorem List (p. 199 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gsumconst 19801* | Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) β β’ ((πΊ β Mnd β§ π΄ β Fin β§ π β π΅) β (πΊ Ξ£g (π β π΄ β¦ π)) = ((β―βπ΄) Β· π)) | ||
Theorem | gsumconstf 19802* | Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
β’ β²ππ & β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) β β’ ((πΊ β Mnd β§ π΄ β Fin β§ π β π΅) β (πΊ Ξ£g (π β π΄ β¦ π)) = ((β―βπ΄) Β· π)) | ||
Theorem | gsummptshft 19803* | Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΎ β β€) & β’ (π β π β β€) & β’ (π β π β β€) & β’ ((π β§ π β (π...π)) β π΄ β π΅) & β’ (π = (π β πΎ) β π΄ = πΆ) β β’ (π β (πΊ Ξ£g (π β (π...π) β¦ π΄)) = (πΊ Ξ£g (π β ((π + πΎ)...(π + πΎ)) β¦ πΆ))) | ||
Theorem | gsumzmhm 19804 | Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β πΎ β (πΊ MndHom π»)) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ 0 = (0gβπΊ) & β’ (π β πΉ finSupp 0 ) β β’ (π β (π» Ξ£g (πΎ β πΉ)) = (πΎβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsummhm 19805 | Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β πΎ β (πΊ MndHom π»)) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (π» Ξ£g (πΎ β πΉ)) = (πΎβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsummhm2 19806* | Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β (π₯ β π΅ β¦ πΆ) β (πΊ MndHom π»)) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π₯ = π β πΆ = π·) & β’ (π₯ = (πΊ Ξ£g (π β π΄ β¦ π)) β πΆ = πΈ) β β’ (π β (π» Ξ£g (π β π΄ β¦ π·)) = πΈ) | ||
Theorem | gsummptmhm 19807* | Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018.) (Revised by AV, 8-Sep-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β πΎ β (πΊ MndHom π»)) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ (π β (π₯ β π΄ β¦ πΆ) finSupp 0 ) β β’ (π β (π» Ξ£g (π₯ β π΄ β¦ (πΎβπΆ))) = (πΎβ(πΊ Ξ£g (π₯ β π΄ β¦ πΆ)))) | ||
Theorem | gsummulglem 19808* | Lemma for gsummulg 19809 and gsummulgz 19810. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β CMnd) & β’ (π β π β β€) & β’ (π β (πΊ β Abel β¨ π β β0)) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsummulg 19809* | Nonnegative multiple of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β CMnd) & β’ (π β π β β0) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsummulgz 19810* | Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β Abel) & β’ (π β π β β€) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsumzoppg 19811 | The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ π = (oppgβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (π Ξ£g πΉ) = (πΊ Ξ£g πΉ)) | ||
Theorem | gsumzinv 19812 | Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Grp) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsuminv 19813 | Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 4-May-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsummptfidminv 19814* | Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ πΉ = (π₯ β π΄ β¦ πΆ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsumsub 19815 | The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ β = (-gβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π»:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΉ βf β π»)) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»))) | ||
Theorem | gsummptfssub 19816* | The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ β = (-gβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β π΅) & β’ (π β πΉ = (π₯ β π΄ β¦ πΆ)) & β’ (π β π» = (π₯ β π΄ β¦ π·)) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ (πΆ β π·))) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»))) | ||
Theorem | gsummptfidmsub 19817* | The difference of two group sums expressed as mappings with finite domain. (Contributed by AV, 7-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ β = (-gβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β π΅) & β’ πΉ = (π₯ β π΄ β¦ πΆ) & β’ π» = (π₯ β π΄ β¦ π·) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ (πΆ β π·))) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»))) | ||
Theorem | gsumsnfd 19818* | Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π β π) & β’ (π β πΆ β π΅) & β’ ((π β§ π = π) β π΄ = πΆ) & β’ β²ππ & β’ β²ππΆ β β’ (π β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumsnd 19819* | Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π β π) & β’ (π β πΆ β π΅) & β’ ((π β§ π = π) β π΄ = πΆ) β β’ (π β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumsnf 19820* | Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
β’ β²ππΆ & β’ π΅ = (BaseβπΊ) & β’ (π = π β π΄ = πΆ) β β’ ((πΊ β Mnd β§ π β π β§ πΆ β π΅) β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumsn 19821* | Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π = π β π΄ = πΆ) β β’ ((πΊ β Mnd β§ π β π β§ πΆ β π΅) β (πΊ Ξ£g (π β {π} β¦ π΄)) = πΆ) | ||
Theorem | gsumpr 19822* | Group sum of a pair. (Contributed by AV, 6-Dec-2018.) (Proof shortened by AV, 28-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π = π β π΄ = πΆ) & β’ (π = π β π΄ = π·) β β’ ((πΊ β CMnd β§ (π β π β§ π β π β§ π β π) β§ (πΆ β π΅ β§ π· β π΅)) β (πΊ Ξ£g (π β {π, π} β¦ π΄)) = (πΆ + π·)) | ||
Theorem | gsumzunsnd 19823* | Append an element to a finite group sum, more general version of gsumunsnd 19825. (Contributed by AV, 7-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ πΉ = (π β (π΄ βͺ {π}) β¦ π) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β Fin) & β’ (π β ran πΉ β (πβran πΉ)) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) β β’ (π β (πΊ Ξ£g πΉ) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsnfd 19824* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) & β’ β²ππ β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsnd 19825* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 2-Jan-2019.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsnf 19826* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
β’ β²ππ & β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ (π = π β π = π) β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumunsn 19827* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Proof shortened by AV, 8-Mar-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π) & β’ (π β Β¬ π β π΄) & β’ (π β π β π΅) & β’ (π = π β π = π) β β’ (π β (πΊ Ξ£g (π β (π΄ βͺ {π}) β¦ π)) = ((πΊ Ξ£g (π β π΄ β¦ π)) + π)) | ||
Theorem | gsumdifsnd 19828* | Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β (π β π΄ β¦ π) finSupp (0gβπΊ)) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β π β π΄) & β’ (π β π β π΅) & β’ ((π β§ π = π) β π = π) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ π)) = ((πΊ Ξ£g (π β (π΄ β {π}) β¦ π)) + π)) | ||
Theorem | gsumpt 19829 | Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β π β π΄) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β (πΉ supp 0 ) β {π}) β β’ (π β (πΊ Ξ£g πΉ) = (πΉβπ)) | ||
Theorem | gsummptf1o 19830* | Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
β’ β²π₯π» & β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π₯ = πΈ β πΆ = π») & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ (π β πΉ β π΅) & β’ ((π β§ π₯ β π΄) β πΆ β πΉ) & β’ ((π β§ π¦ β π·) β πΈ β π΄) & β’ ((π β§ π₯ β π΄) β β!π¦ β π· π₯ = πΈ) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ πΆ)) = (πΊ Ξ£g (π¦ β π· β¦ π»))) | ||
Theorem | gsummptun 19831* | Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
β’ π΅ = (Baseβπ) & β’ + = (+gβπ) & β’ (π β π β CMnd) & β’ (π β (π΄ βͺ πΆ) β Fin) & β’ (π β (π΄ β© πΆ) = β ) & β’ ((π β§ π₯ β (π΄ βͺ πΆ)) β π· β π΅) β β’ (π β (π Ξ£g (π₯ β (π΄ βͺ πΆ) β¦ π·)) = ((π Ξ£g (π₯ β π΄ β¦ π·)) + (π Ξ£g (π₯ β πΆ β¦ π·)))) | ||
Theorem | gsummpt1n0 19832* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19833. (Contributed by AV, 11-Oct-2019.) |
β’ 0 = (0gβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β πΌ β π) & β’ (π β π β πΌ) & β’ πΉ = (π β πΌ β¦ if(π = π, π΄, 0 )) & β’ (π β βπ β πΌ π΄ β (BaseβπΊ)) β β’ (π β (πΊ Ξ£g πΉ) = β¦π / πβ¦π΄) | ||
Theorem | gsummptif1n0 19833* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019.) (Proof shortened by AV, 11-Oct-2019.) |
β’ 0 = (0gβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β πΌ β π) & β’ (π β π β πΌ) & β’ πΉ = (π β πΌ β¦ if(π = π, π΄, 0 )) & β’ (π β π΄ β (BaseβπΊ)) β β’ (π β (πΊ Ξ£g πΉ) = π΄) | ||
Theorem | gsummptcl 19834* | Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β Fin) & β’ (π β βπ β π π β π΅) β β’ (π β (πΊ Ξ£g (π β π β¦ π)) β π΅) | ||
Theorem | gsummptfif1o 19835* | Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β Fin) & β’ (π β βπ β π π β π΅) & β’ πΉ = (π β π β¦ π) & β’ (π β π»:πΆβ1-1-ontoβπ) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (πΉ β π»))) | ||
Theorem | gsummptfzcl 19836* | Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π β (β€β₯βπ)) & β’ (π β πΌ = (π...π)) & β’ (π β βπ β πΌ π β π΅) β β’ (π β (πΊ Ξ£g (π β πΌ β¦ π)) β π΅) | ||
Theorem | gsum2dlem1 19837* | Lemma 1 for gsum2d 19839. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β Rel π΄) & β’ (π β π· β π) & β’ (π β dom π΄ β π·) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (π β (π΄ β {π}) β¦ (ππΉπ))) β π΅) | ||
Theorem | gsum2dlem2 19838* | Lemma for gsum2d 19839. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β Rel π΄) & β’ (π β π· β π) & β’ (π β dom π΄ β π·) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΉ βΎ (π΄ βΎ dom (πΉ supp 0 )))) = (πΊ Ξ£g (π β dom (πΉ supp 0 ) β¦ (πΊ Ξ£g (π β (π΄ β {π}) β¦ (ππΉπ)))))) | ||
Theorem | gsum2d 19839* | Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β Rel π΄) & β’ (π β π· β π) & β’ (π β dom π΄ β π·) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (π β π· β¦ (πΊ Ξ£g (π β (π΄ β {π}) β¦ (ππΉπ)))))) | ||
Theorem | gsum2d2lem 19840* | Lemma for gsum2d2 19841: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (π β π΄, π β πΆ β¦ π) finSupp 0 ) | ||
Theorem | gsum2d2 19841* | Write a group sum over a two-dimensional region as a double sum. Note that πΆ(π) is a function of π. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (πΊ Ξ£g (π β π΄, π β πΆ β¦ π)) = (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ π))))) | ||
Theorem | gsumcom2 19842* | Two-dimensional commutation of a group sum. Note that while π΄ and π· are constants w.r.t. π, π, πΆ(π) and πΈ(π) are not. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) & β’ (π β π· β π) & β’ (π β ((π β π΄ β§ π β πΆ) β (π β π· β§ π β πΈ))) β β’ (π β (πΊ Ξ£g (π β π΄, π β πΆ β¦ π)) = (πΊ Ξ£g (π β π·, π β πΈ β¦ π))) | ||
Theorem | gsumxp 19843* | Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β πΉ:(π΄ Γ πΆ)βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ (ππΉπ)))))) | ||
Theorem | gsumcom 19844* | Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (πΊ Ξ£g (π β π΄, π β πΆ β¦ π)) = (πΊ Ξ£g (π β πΆ, π β π΄ β¦ π))) | ||
Theorem | gsumcom3 19845* | A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) & β’ (π β π β Fin) & β’ ((π β§ ((π β π΄ β§ π β πΆ) β§ Β¬ πππ)) β π = 0 ) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ π)))) = (πΊ Ξ£g (π β πΆ β¦ (πΊ Ξ£g (π β π΄ β¦ π))))) | ||
Theorem | gsumcom3fi 19846* | A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ (π β πΆ β Fin) & β’ ((π β§ (π β π΄ β§ π β πΆ)) β π β π΅) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ π)))) = (πΊ Ξ£g (π β πΆ β¦ (πΊ Ξ£g (π β π΄ β¦ π))))) | ||
Theorem | gsumxp2 19847* | Write a group sum over a cartesian product as a double sum in two ways. This corresponds to the first equation in [Lang] p. 6. (Contributed by AV, 27-Dec-2023.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ (π β πΉ:(π΄ Γ πΆ)βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (π β πΆ β¦ (πΊ Ξ£g (π β π΄ β¦ (ππΉπ))))) = (πΊ Ξ£g (π β π΄ β¦ (πΊ Ξ£g (π β πΆ β¦ (ππΉπ)))))) | ||
Theorem | prdsgsum 19848* | Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
β’ π = (πXs(π₯ β πΌ β¦ π )) & β’ π΅ = (Baseβπ ) & β’ 0 = (0gβπ) & β’ (π β πΌ β π) & β’ (π β π½ β π) & β’ (π β π β π) & β’ ((π β§ π₯ β πΌ) β π β CMnd) & β’ ((π β§ (π₯ β πΌ β§ π¦ β π½)) β π β π΅) & β’ (π β (π¦ β π½ β¦ (π₯ β πΌ β¦ π)) finSupp 0 ) β β’ (π β (π Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (π₯ β πΌ β¦ (π Ξ£g (π¦ β π½ β¦ π)))) | ||
Theorem | pwsgsum 19849* | Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
β’ π = (π βs πΌ) & β’ π΅ = (Baseβπ ) & β’ 0 = (0gβπ) & β’ (π β πΌ β π) & β’ (π β π½ β π) & β’ (π β π β CMnd) & β’ ((π β§ (π₯ β πΌ β§ π¦ β π½)) β π β π΅) & β’ (π β (π¦ β π½ β¦ (π₯ β πΌ β¦ π)) finSupp 0 ) β β’ (π β (π Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (π₯ β πΌ β¦ (π Ξ£g (π¦ β π½ β¦ π)))) | ||
Theorem | fsfnn0gsumfsffz 19850* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β π β β0) & β’ π» = (πΉ βΎ (0...π)) β β’ (π β (βπ₯ β β0 (π < π₯ β (πΉβπ₯) = 0 ) β (πΊ Ξ£g πΉ) = (πΊ Ξ£g π»))) | ||
Theorem | nn0gsumfz 19851* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β πΉ finSupp 0 ) β β’ (π β βπ β β0 βπ β (π΅ βm (0...π ))(π = (πΉ βΎ (0...π )) β§ βπ₯ β β0 (π < π₯ β (πΉβπ₯) = 0 ) β§ (πΊ Ξ£g πΉ) = (πΊ Ξ£g π))) | ||
Theorem | nn0gsumfz0 19852* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β πΉ finSupp 0 ) β β’ (π β βπ β β0 βπ β (π΅ βm (0...π ))(πΊ Ξ£g πΉ) = (πΊ Ξ£g π)) | ||
Theorem | gsummptnn0fz 19853* | A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β βπ β β0 πΆ β π΅) & β’ (π β π β β0) & β’ (π β βπ β β0 (π < π β πΆ = 0 )) β β’ (π β (πΊ Ξ£g (π β β0 β¦ πΆ)) = (πΊ Ξ£g (π β (0...π) β¦ πΆ))) | ||
Theorem | gsummptnn0fzfv 19854* | A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ β (π΅ βm β0)) & β’ (π β π β β0) & β’ (π β βπ₯ β β0 (π < π₯ β (πΉβπ₯) = 0 )) β β’ (π β (πΊ Ξ£g (π β β0 β¦ (πΉβπ))) = (πΊ Ξ£g (π β (0...π) β¦ (πΉβπ)))) | ||
Theorem | telgsumfzslem 19855* | Lemma for telgsumfzs 19856 (induction step). (Contributed by AV, 23-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) β β’ ((π¦ β (β€β₯βπ) β§ (π β§ βπ β (π...((π¦ + 1) + 1))πΆ β π΅)) β ((πΊ Ξ£g (π β (π...π¦) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦π / πβ¦πΆ β β¦(π¦ + 1) / πβ¦πΆ) β (πΊ Ξ£g (π β (π...(π¦ + 1)) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦π / πβ¦πΆ β β¦((π¦ + 1) + 1) / πβ¦πΆ))) | ||
Theorem | telgsumfzs 19856* | Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β (β€β₯βπ)) & β’ (π β βπ β (π...(π + 1))πΆ β π΅) β β’ (π β (πΊ Ξ£g (π β (π...π) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ)) | ||
Theorem | telgsumfz 19857* | Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15749. (Contributed by AV, 23-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β (β€β₯βπ)) & β’ (π β βπ β (π...(π + 1))π΄ β π΅) & β’ (π = π β π΄ = πΏ) & β’ (π = (π + 1) β π΄ = πΆ) & β’ (π = π β π΄ = π·) & β’ (π = (π + 1) β π΄ = πΈ) β β’ (π β (πΊ Ξ£g (π β (π...π) β¦ (πΏ β πΆ))) = (π· β πΈ)) | ||
Theorem | telgsumfz0s 19858* | Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β β0) & β’ (π β βπ β (0...(π + 1))πΆ β π΅) β β’ (π β (πΊ Ξ£g (π β (0...π) β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = (β¦0 / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ)) | ||
Theorem | telgsumfz0 19859* | Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 15749. (Contributed by AV, 23-Nov-2019.) |
β’ πΎ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ (π β π β β0) & β’ (π β βπ β (0...(π + 1))π΄ β πΎ) & β’ (π = π β π΄ = π΅) & β’ (π = (π + 1) β π΄ = πΆ) & β’ (π = 0 β π΄ = π·) & β’ (π = (π + 1) β π΄ = πΈ) β β’ (π β (πΊ Ξ£g (π β (0...π) β¦ (π΅ β πΆ))) = (π· β πΈ)) | ||
Theorem | telgsums 19860* | Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β βπ β β0 πΆ β π΅) & β’ (π β π β β0) & β’ (π β βπ β β0 (π < π β πΆ = 0 )) β β’ (π β (πΊ Ξ£g (π β β0 β¦ (β¦π / πβ¦πΆ β β¦(π + 1) / πβ¦πΆ))) = β¦0 / πβ¦πΆ) | ||
Theorem | telgsum 19861* | Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ (π β πΊ β Abel) & β’ β = (-gβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β βπ β β0 π΄ β π΅) & β’ (π β π β β0) & β’ (π β βπ β β0 (π < π β π΄ = 0 )) & β’ (π = π β π΄ = πΆ) & β’ (π = (π + 1) β π΄ = π·) & β’ (π = 0 β π΄ = πΈ) β β’ (π β (πΊ Ξ£g (π β β0 β¦ (πΆ β π·))) = πΈ) | ||
Syntax | cdprd 19862 | Internal direct product of a family of subgroups. |
class DProd | ||
Syntax | cdpj 19863 | Projection operator for a direct product. |
class dProj | ||
Definition | df-dprd 19864* | Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ DProd = (π β Grp, π β {β β£ (β:dom ββΆ(SubGrpβπ) β§ βπ₯ β dom β(βπ¦ β (dom β β {π₯})(ββπ₯) β ((Cntzβπ)β(ββπ¦)) β§ ((ββπ₯) β© ((mrClsβ(SubGrpβπ))ββͺ (β β (dom β β {π₯})))) = {(0gβπ)}))} β¦ ran (π β {β β Xπ₯ β dom π (π βπ₯) β£ β finSupp (0gβπ)} β¦ (π Ξ£g π))) | ||
Definition | df-dpj 19865* | Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ dProj = (π β Grp, π β (dom DProd β {π}) β¦ (π β dom π β¦ ((π βπ)(proj1βπ)(π DProd (π βΎ (dom π β {π})))))) | ||
Theorem | reldmdprd 19866 | The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
β’ Rel dom DProd | ||
Theorem | dmdprd 19867* | The domain of definition of the internal direct product, which states that π is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
β’ π = (CntzβπΊ) & β’ 0 = (0gβπΊ) & β’ πΎ = (mrClsβ(SubGrpβπΊ)) β β’ ((πΌ β π β§ dom π = πΌ) β (πΊdom DProd π β (πΊ β Grp β§ π:πΌβΆ(SubGrpβπΊ) β§ βπ₯ β πΌ (βπ¦ β (πΌ β {π₯})(πβπ₯) β (πβ(πβπ¦)) β§ ((πβπ₯) β© (πΎββͺ (π β (πΌ β {π₯})))) = { 0 })))) | ||
Theorem | dmdprdd 19868* | Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = (CntzβπΊ) & β’ 0 = (0gβπΊ) & β’ πΎ = (mrClsβ(SubGrpβπΊ)) & β’ (π β πΊ β Grp) & β’ (π β πΌ β π) & β’ (π β π:πΌβΆ(SubGrpβπΊ)) & β’ ((π β§ (π₯ β πΌ β§ π¦ β πΌ β§ π₯ β π¦)) β (πβπ₯) β (πβ(πβπ¦))) & β’ ((π β§ π₯ β πΌ) β ((πβπ₯) β© (πΎββͺ (π β (πΌ β {π₯})))) β { 0 }) β β’ (π β πΊdom DProd π) | ||
Theorem | dprddomprc 19869 | A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
β’ (dom π β V β Β¬ πΊdom DProd π) | ||
Theorem | dprddomcld 19870 | If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) β β’ (π β πΌ β V) | ||
Theorem | dprdval0prc 19871 | The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
β’ (dom π β V β (πΊ DProd π) = β ) | ||
Theorem | dprdval 19872* | The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } β β’ ((πΊdom DProd π β§ dom π = πΌ) β (πΊ DProd π) = ran (π β π β¦ (πΊ Ξ£g π))) | ||
Theorem | eldprd 19873* | A class π΄ is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } β β’ (dom π = πΌ β (π΄ β (πΊ DProd π) β (πΊdom DProd π β§ βπ β π π΄ = (πΊ Ξ£g π)))) | ||
Theorem | dprdgrp 19874 | Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (πΊdom DProd π β πΊ β Grp) | ||
Theorem | dprdf 19875 | The function π is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (πΊdom DProd π β π:dom πβΆ(SubGrpβπΊ)) | ||
Theorem | dprdf2 19876 | The function π is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) β β’ (π β π:πΌβΆ(SubGrpβπΊ)) | ||
Theorem | dprdcntz 19877 | The function π is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) & β’ (π β π β πΌ) & β’ (π β π β π) & β’ π = (CntzβπΊ) β β’ (π β (πβπ) β (πβ(πβπ))) | ||
Theorem | dprddisj 19878 | The function π is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) & β’ 0 = (0gβπΊ) & β’ πΎ = (mrClsβ(SubGrpβπΊ)) β β’ (π β ((πβπ) β© (πΎββͺ (π β (πΌ β {π})))) = { 0 }) | ||
Theorem | dprdw 19879* | The property of being a finitely supported function in the family π. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) β β’ (π β (πΉ β π β (πΉ Fn πΌ β§ βπ₯ β πΌ (πΉβπ₯) β (πβπ₯) β§ πΉ finSupp 0 ))) | ||
Theorem | dprdwd 19880* | A mapping being a finitely supported function in the family π. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ ((π β§ π₯ β πΌ) β π΄ β (πβπ₯)) & β’ (π β (π₯ β πΌ β¦ π΄) finSupp 0 ) β β’ (π β (π₯ β πΌ β¦ π΄) β π) | ||
Theorem | dprdff 19881* | A finitely supported function in π is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ π΅ = (BaseβπΊ) β β’ (π β πΉ:πΌβΆπ΅) | ||
Theorem | dprdfcl 19882* | A finitely supported function in π has its π-th element in π(π). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ ((π β§ π β πΌ) β (πΉβπ) β (πβπ)) | ||
Theorem | dprdffsupp 19883* | A finitely supported function in π is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ (π β πΉ finSupp 0 ) | ||
Theorem | dprdfcntz 19884* | A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ π = (CntzβπΊ) β β’ (π β ran πΉ β (πβran πΉ)) | ||
Theorem | dprdssv 19885 | The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ π΅ = (BaseβπΊ) β β’ (πΊ DProd π) β π΅ | ||
Theorem | dprdfid 19886* | A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) & β’ (π β π΄ β (πβπ)) & β’ πΉ = (π β πΌ β¦ if(π = π, π΄, 0 )) β β’ (π β (πΉ β π β§ (πΊ Ξ£g πΉ) = π΄)) | ||
Theorem | eldprdi 19887* | The domain of definition of the internal direct product, which states that π is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ (π β (πΊ Ξ£g πΉ) β (πΊ DProd π)) | ||
Theorem | dprdfinv 19888* | Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ π = (invgβπΊ) β β’ (π β ((π β πΉ) β π β§ (πΊ Ξ£g (π β πΉ)) = (πβ(πΊ Ξ£g πΉ)))) | ||
Theorem | dprdfadd 19889* | Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ (π β π» β π) & β’ + = (+gβπΊ) β β’ (π β ((πΉ βf + π») β π β§ (πΊ Ξ£g (πΉ βf + π»)) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»)))) | ||
Theorem | dprdfsub 19890* | Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ (π β π» β π) & β’ β = (-gβπΊ) β β’ (π β ((πΉ βf β π») β π β§ (πΊ Ξ£g (πΉ βf β π»)) = ((πΊ Ξ£g πΉ) β (πΊ Ξ£g π»)))) | ||
Theorem | dprdfeq0 19891* | The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) β β’ (π β ((πΊ Ξ£g πΉ) = 0 β πΉ = (π₯ β πΌ β¦ 0 ))) | ||
Theorem | dprdf11 19892* | Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
β’ 0 = (0gβπΊ) & β’ π = {β β Xπ β πΌ (πβπ) β£ β finSupp 0 } & β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β πΉ β π) & β’ (π β π» β π) β β’ (π β ((πΊ Ξ£g πΉ) = (πΊ Ξ£g π») β πΉ = π»)) | ||
Theorem | dprdsubg 19893 | The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (πΊdom DProd π β (πΊ DProd π) β (SubGrpβπΊ)) | ||
Theorem | dprdub 19894 | Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β πΌ) β β’ (π β (πβπ) β (πΊ DProd π)) | ||
Theorem | dprdlub 19895* | The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π β (SubGrpβπΊ)) & β’ ((π β§ π β πΌ) β (πβπ) β π) β β’ (π β (πΊ DProd π) β π) | ||
Theorem | dprdspan 19896 | The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ πΎ = (mrClsβ(SubGrpβπΊ)) β β’ (πΊdom DProd π β (πΊ DProd π) = (πΎββͺ ran π)) | ||
Theorem | dprdres 19897 | Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π΄ β πΌ) β β’ (π β (πΊdom DProd (π βΎ π΄) β§ (πΊ DProd (π βΎ π΄)) β (πΊ DProd π))) | ||
Theorem | dprdss 19898* | Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ (π β πΊdom DProd π) & β’ (π β dom π = πΌ) & β’ (π β π:πΌβΆ(SubGrpβπΊ)) & β’ ((π β§ π β πΌ) β (πβπ) β (πβπ)) β β’ (π β (πΊdom DProd π β§ (πΊ DProd π) β (πΊ DProd π))) | ||
Theorem | dprdz 19899* | A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ 0 = (0gβπΊ) β β’ ((πΊ β Grp β§ πΌ β π) β (πΊdom DProd (π₯ β πΌ β¦ { 0 }) β§ (πΊ DProd (π₯ β πΌ β¦ { 0 })) = { 0 })) | ||
Theorem | dprd0 19900 | The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
β’ 0 = (0gβπΊ) β β’ (πΊ β Grp β (πΊdom DProd β β§ (πΊ DProd β ) = { 0 })) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |