| Metamath
Proof Explorer Theorem List (p. 199 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ablnnncan 19801 | Cancellation law for group subtraction. (nnncan 11516 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) | ||
| Theorem | ablnnncan1 19802 | Cancellation law for group subtraction. (nnncan1 11517 analog.) (Contributed by NM, 7-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) | ||
| Theorem | ablsubsub23 19803 | Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | ||
| Theorem | mulgnn0di 19804 | Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) | ||
| Theorem | mulgdi 19805 | Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) | ||
| Theorem | mulgmhm 19806* | The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺)) | ||
| Theorem | mulgghm 19807* | The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) | ||
| Theorem | mulgsubdi 19808 | Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) | ||
| Theorem | ghmfghm 19809* | The function fulfilling the conditions of ghmgrp 19047 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | ghmcmn 19810* | The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ CMnd) ⇒ ⊢ (𝜑 → 𝐻 ∈ CMnd) | ||
| Theorem | ghmabl 19811* | The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐻 ∈ Abel) | ||
| Theorem | invghm 19812 | The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺)) | ||
| Theorem | eqgabl 19813 | Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) | ||
| Theorem | qusecsub 19814 | Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) | ||
| Theorem | subgabl 19815 | A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) | ||
| Theorem | subcmn 19816 | A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) | ||
| Theorem | submcmn 19817 | A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ CMnd) | ||
| Theorem | submcmn2 19818 | A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍‘𝑆))) | ||
| Theorem | cntzcmn 19819 | The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) | ||
| Theorem | cntzcmnss 19820 | Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆)) | ||
| Theorem | cntrcmnd 19821 | The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) ⇒ ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ CMnd) | ||
| Theorem | cntrabl 19822 | The center of a group is an abelian group. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) ⇒ ⊢ (𝑀 ∈ Grp → 𝑍 ∈ Abel) | ||
| Theorem | cntzspan 19823 | If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) & ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) | ||
| Theorem | cntzcmnf 19824 | Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | ||
| Theorem | ghmplusg 19825 | The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ + = (+g‘𝑁) ⇒ ⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁)) | ||
| Theorem | ablnsg 19826 | Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) | ||
| Theorem | odadd1 19827 | The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) | ||
| Theorem | odadd2 19828 | The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2))) | ||
| Theorem | odadd 19829 | The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂‘𝐴) · (𝑂‘𝐵))) | ||
| Theorem | gex2abl 19830 | A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel) | ||
| Theorem | gexexlem 19831* | Lemma for gexex 19832. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑂‘𝑦) ≤ (𝑂‘𝐴)) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) | ||
| Theorem | gexex 19832* | In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if 𝐸 = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so 𝐸 is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) = 𝐸) | ||
| Theorem | torsubg 19833 | The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺)) | ||
| Theorem | oddvdssubg 19834* | The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) | ||
| Theorem | lsmcomx 19835 | Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) | ||
| Theorem | ablcntzd 19836 | All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | ||
| Theorem | lsmcom 19837 | Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) | ||
| Theorem | lsmsubg2 19838 | The sum of two subgroups is a subgroup. (Contributed by NM, 4-Feb-2014.) (Proof shortened by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺)) | ||
| Theorem | lsm4 19839 | Commutative/associative law for subgroup sum. (Contributed by NM, 26-Sep-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑄 ∈ (SubGrp‘𝐺) ∧ 𝑅 ∈ (SubGrp‘𝐺)) ∧ (𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺))) → ((𝑄 ⊕ 𝑅) ⊕ (𝑇 ⊕ 𝑈)) = ((𝑄 ⊕ 𝑇) ⊕ (𝑅 ⊕ 𝑈))) | ||
| Theorem | prdscmnd 19840 | The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶CMnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ CMnd) | ||
| Theorem | prdsabld 19841 | The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Abel) ⇒ ⊢ (𝜑 → 𝑌 ∈ Abel) | ||
| Theorem | pwscmn 19842 | The structure power on a commutative monoid is commutative. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ CMnd ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ CMnd) | ||
| Theorem | pwsabl 19843 | The structure power on an Abelian group is Abelian. (Contributed by Mario Carneiro, 21-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Abel) | ||
| Theorem | qusabl 19844 | If 𝑌 is a subgroup of the abelian group 𝐺, then 𝐻 = 𝐺 / 𝑌 is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) | ||
| Theorem | abl1 19845 | The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) | ||
| Theorem | abln0 19846 | Abelian groups (and therefore also groups and monoids) exist. (Contributed by AV, 29-Apr-2019.) |
| ⊢ Abel ≠ ∅ | ||
| Theorem | cnaddablx 19847 | The complex numbers are an Abelian group under addition. This version of cnaddabl 19848 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 19848 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.) |
| ⊢ 𝐺 = {〈1, ℂ〉, 〈2, + 〉} ⇒ ⊢ 𝐺 ∈ Abel | ||
| Theorem | cnaddabl 19848 | The complex numbers are an Abelian group under addition. This version of cnaddablx 19847 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 21351. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 ∈ Abel | ||
| Theorem | cnaddid 19849 | The group identity element of complex number addition is zero. See also cnfld0 21353. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (0g‘𝐺) = 0 | ||
| Theorem | cnaddinv 19850 | Value of the group inverse of complex number addition. See also cnfldneg 21356. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐴 ∈ ℂ → ((invg‘𝐺)‘𝐴) = -𝐴) | ||
| Theorem | zaddablx 19851 | The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21386 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} ⇒ ⊢ 𝐺 ∈ Abel | ||
| Theorem | frgpnabllem1 19852* | Lemma for frgpnabl 19854. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝐺) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) & ⊢ (𝜑 → 𝐵 ∈ 𝐼) ⇒ ⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ (𝐷 ∩ ((𝑈‘𝐴) + (𝑈‘𝐵)))) | ||
| Theorem | frgpnabllem2 19853* | Lemma for frgpnabl 19854. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝐺) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) & ⊢ (𝜑 → 𝐵 ∈ 𝐼) & ⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = ((𝑈‘𝐵) + (𝑈‘𝐴))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | frgpnabl 19854 | The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) | ||
| Theorem | imasabl 19855* | The image structure of an abelian group is an abelian group (imasgrp 19037 analog). (Contributed by AV, 22-Feb-2025.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Abel) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Abel ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Syntax | ccyg 19856 | Cyclic group. |
| class CycGrp | ||
| Definition | df-cyg 19857* | Define a cyclic group, which is a group with an element 𝑥, called the generator of the group, such that all elements in the group are multiples of 𝑥. A generator is usually not unique. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} | ||
| Theorem | iscyg 19858* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) | ||
| Theorem | iscyggen 19859* | The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ⇒ ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) | ||
| Theorem | iscyggen2 19860* | The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ⇒ ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) | ||
| Theorem | iscyg2 19861* | A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ⇒ ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅)) | ||
| Theorem | cyggeninv 19862* | The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑁‘𝑋) ∈ 𝐸) | ||
| Theorem | cyggenod 19863* | An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) | ||
| Theorem | cyggenod2 19864* | In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) | ||
| Theorem | iscyg3 19865* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥))) | ||
| Theorem | iscygd 19866* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CycGrp) | ||
| Theorem | iscygodd 19867 | Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CycGrp) | ||
| Theorem | cycsubmcmn 19868* | The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) | ||
| Theorem | cyggrp 19869 | A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | ||
| Theorem | cygabl 19870 | A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 20-Jan-2024.) |
| ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Abel) | ||
| Theorem | cygctb 19871 | A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) | ||
| Theorem | 0cyg 19872 | The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) | ||
| Theorem | prmcyg 19873 | A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp) | ||
| Theorem | lt6abl 19874 | A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel) | ||
| Theorem | ghmcyg 19875 | The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = (Base‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) | ||
| Theorem | cyggex2 19876 | The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) | ||
| Theorem | cyggex 19877 | The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin) → 𝐸 = (♯‘𝐵)) | ||
| Theorem | cyggexb 19878 | A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) | ||
| Theorem | giccyg 19879 | Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) | ||
| Theorem | cycsubgcyg 19880* | The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) | ||
| Theorem | cycsubgcyg2 19881 | The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s (𝐾‘{𝐴})) ∈ CycGrp) | ||
| Theorem | gsumval3a 19882* | Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → 𝑊 ≠ ∅) & ⊢ 𝑊 = (𝐹 supp 0 ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ran ...) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | ||
| Theorem | gsumval3eu 19883* | The group sum as defined in gsumval3a 19882 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → 𝑊 ≠ ∅) & ⊢ (𝜑 → 𝑊 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) | ||
| Theorem | gsumval3lem1 19884* | Lemma 1 for gsumval3 19886. (Contributed by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) & ⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) ⇒ ⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) | ||
| Theorem | gsumval3lem2 19885* | Lemma 2 for gsumval3 19886. (Contributed by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) & ⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) ⇒ ⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊))) | ||
| Theorem | gsumval3 19886 | Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) & ⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))‘𝑀)) | ||
| Theorem | gsumcllem 19887* | Lemma for gsumcl 19894 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) | ||
| Theorem | gsumzres 19888 | Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹)) | ||
| Theorem | gsumzcl2 19889 | Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 19890, because it is not required that 𝐹 is a function (actually, the hypothesis always holds for any proper class 𝐹). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumzcl 19890 | Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumzf1o 19891 | Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
| Theorem | gsumres 19892 | Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹)) | ||
| Theorem | gsumcl2 19893 | Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl 19894, because it is not required that 𝐹 is a function (actually, the hypothesis always holds for any proper class 𝐹). (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumcl 19894 | Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumf1o 19895 | Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
| Theorem | gsumreidx 19896 | Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with 𝑀 = 1. (Contributed by AV, 26-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) & ⊢ (𝜑 → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
| Theorem | gsumzsubmcl 19897 | Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) | ||
| Theorem | gsumsubmcl 19898 | Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) | ||
| Theorem | gsumsubgcl 19899 | Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) | ||
| Theorem | gsumzaddlem 19900* | The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻 finSupp 0 ) & ⊢ 𝑊 = ((𝐹 ∪ 𝐻) supp 0 ) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) & ⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |