![]() |
Metamath
Proof Explorer Theorem List (p. 199 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ablnsg 19801 | Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
β’ (πΊ β Abel β (NrmSGrpβπΊ) = (SubGrpβπΊ)) | ||
Theorem | odadd1 19802 | The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.) |
β’ π = (odβπΊ) & β’ π = (BaseβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β Abel β§ π΄ β π β§ π΅ β π) β ((πβ(π΄ + π΅)) Β· ((πβπ΄) gcd (πβπ΅))) β₯ ((πβπ΄) Β· (πβπ΅))) | ||
Theorem | odadd2 19803 | The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.) |
β’ π = (odβπΊ) & β’ π = (BaseβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β Abel β§ π΄ β π β§ π΅ β π) β ((πβπ΄) Β· (πβπ΅)) β₯ ((πβ(π΄ + π΅)) Β· (((πβπ΄) gcd (πβπ΅))β2))) | ||
Theorem | odadd 19804 | The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.) |
β’ π = (odβπΊ) & β’ π = (BaseβπΊ) & β’ + = (+gβπΊ) β β’ (((πΊ β Abel β§ π΄ β π β§ π΅ β π) β§ ((πβπ΄) gcd (πβπ΅)) = 1) β (πβ(π΄ + π΅)) = ((πβπ΄) Β· (πβπ΅))) | ||
Theorem | gex2abl 19805 | A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.) |
β’ π = (BaseβπΊ) & β’ πΈ = (gExβπΊ) β β’ ((πΊ β Grp β§ πΈ β₯ 2) β πΊ β Abel) | ||
Theorem | gexexlem 19806* | Lemma for gexex 19807. (Contributed by Mario Carneiro, 24-Apr-2016.) |
β’ π = (BaseβπΊ) & β’ πΈ = (gExβπΊ) & β’ π = (odβπΊ) & β’ (π β πΊ β Abel) & β’ (π β πΈ β β) & β’ (π β π΄ β π) & β’ ((π β§ π¦ β π) β (πβπ¦) β€ (πβπ΄)) β β’ (π β (πβπ΄) = πΈ) | ||
Theorem | gexex 19807* | In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if πΈ = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so πΈ is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.) |
β’ π = (BaseβπΊ) & β’ πΈ = (gExβπΊ) & β’ π = (odβπΊ) β β’ ((πΊ β Abel β§ πΈ β β) β βπ₯ β π (πβπ₯) = πΈ) | ||
Theorem | torsubg 19808 | The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.) |
β’ π = (odβπΊ) β β’ (πΊ β Abel β (β‘π β β) β (SubGrpβπΊ)) | ||
Theorem | oddvdssubg 19809* | The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.) |
β’ π = (odβπΊ) & β’ π΅ = (BaseβπΊ) β β’ ((πΊ β Abel β§ π β β€) β {π₯ β π΅ β£ (πβπ₯) β₯ π} β (SubGrpβπΊ)) | ||
Theorem | lsmcomx 19810 | Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ β = (LSSumβπΊ) β β’ ((πΊ β Abel β§ π β π΅ β§ π β π΅) β (π β π) = (π β π)) | ||
Theorem | ablcntzd 19811 | All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
β’ π = (CntzβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π β (SubGrpβπΊ)) & β’ (π β π β (SubGrpβπΊ)) β β’ (π β π β (πβπ)) | ||
Theorem | lsmcom 19812 | Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
β’ β = (LSSumβπΊ) β β’ ((πΊ β Abel β§ π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ)) β (π β π) = (π β π)) | ||
Theorem | lsmsubg2 19813 | The sum of two subgroups is a subgroup. (Contributed by NM, 4-Feb-2014.) (Proof shortened by Mario Carneiro, 19-Apr-2016.) |
β’ β = (LSSumβπΊ) β β’ ((πΊ β Abel β§ π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ)) β (π β π) β (SubGrpβπΊ)) | ||
Theorem | lsm4 19814 | Commutative/associative law for subgroup sum. (Contributed by NM, 26-Sep-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
β’ β = (LSSumβπΊ) β β’ ((πΊ β Abel β§ (π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ)) β§ (π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ))) β ((π β π ) β (π β π)) = ((π β π) β (π β π))) | ||
Theorem | prdscmnd 19815 | The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
β’ π = (πXsπ ) & β’ (π β πΌ β π) & β’ (π β π β π) & β’ (π β π :πΌβΆCMnd) β β’ (π β π β CMnd) | ||
Theorem | prdsabld 19816 | The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
β’ π = (πXsπ ) & β’ (π β πΌ β π) & β’ (π β π β π) & β’ (π β π :πΌβΆAbel) β β’ (π β π β Abel) | ||
Theorem | pwscmn 19817 | The structure power on a commutative monoid is commutative. (Contributed by Mario Carneiro, 11-Jan-2015.) |
β’ π = (π βs πΌ) β β’ ((π β CMnd β§ πΌ β π) β π β CMnd) | ||
Theorem | pwsabl 19818 | The structure power on an Abelian group is Abelian. (Contributed by Mario Carneiro, 21-Jan-2015.) |
β’ π = (π βs πΌ) β β’ ((π β Abel β§ πΌ β π) β π β Abel) | ||
Theorem | qusabl 19819 | If π is a subgroup of the abelian group πΊ, then π» = πΊ / π is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016.) |
β’ π» = (πΊ /s (πΊ ~QG π)) β β’ ((πΊ β Abel β§ π β (SubGrpβπΊ)) β π» β Abel) | ||
Theorem | abl1 19820 | The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.) |
β’ π = {β¨(Baseβndx), {πΌ}β©, β¨(+gβndx), {β¨β¨πΌ, πΌβ©, πΌβ©}β©} β β’ (πΌ β π β π β Abel) | ||
Theorem | abln0 19821 | Abelian groups (and therefore also groups and monoids) exist. (Contributed by AV, 29-Apr-2019.) |
β’ Abel β β | ||
Theorem | cnaddablx 19822 | The complex numbers are an Abelian group under addition. This version of cnaddabl 19823 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 19823 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.) |
β’ πΊ = {β¨1, ββ©, β¨2, + β©} β β’ πΊ β Abel | ||
Theorem | cnaddabl 19823 | The complex numbers are an Abelian group under addition. This version of cnaddablx 19822 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 21317. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
β’ πΊ = {β¨(Baseβndx), ββ©, β¨(+gβndx), + β©} β β’ πΊ β Abel | ||
Theorem | cnaddid 19824 | The group identity element of complex number addition is zero. See also cnfld0 21319. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
β’ πΊ = {β¨(Baseβndx), ββ©, β¨(+gβndx), + β©} β β’ (0gβπΊ) = 0 | ||
Theorem | cnaddinv 19825 | Value of the group inverse of complex number addition. See also cnfldneg 21322. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
β’ πΊ = {β¨(Baseβndx), ββ©, β¨(+gβndx), + β©} β β’ (π΄ β β β ((invgβπΊ)βπ΄) = -π΄) | ||
Theorem | zaddablx 19826 | The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21352 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
β’ πΊ = {β¨1, β€β©, β¨2, + β©} β β’ πΊ β Abel | ||
Theorem | frgpnabllem1 19827* | Lemma for frgpnabl 19829. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.) |
β’ πΊ = (freeGrpβπΌ) & β’ π = ( I βWord (πΌ Γ 2o)) & β’ βΌ = ( ~FG βπΌ) & β’ + = (+gβπΊ) & β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) & β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) & β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) & β’ π = (varFGrpβπΌ) & β’ (π β πΌ β π) & β’ (π β π΄ β πΌ) & β’ (π β π΅ β πΌ) β β’ (π β β¨ββ¨π΄, β β©β¨π΅, β β©ββ© β (π· β© ((πβπ΄) + (πβπ΅)))) | ||
Theorem | frgpnabllem2 19828* | Lemma for frgpnabl 19829. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.) |
β’ πΊ = (freeGrpβπΌ) & β’ π = ( I βWord (πΌ Γ 2o)) & β’ βΌ = ( ~FG βπΌ) & β’ + = (+gβπΊ) & β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) & β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) & β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) & β’ π = (varFGrpβπΌ) & β’ (π β πΌ β π) & β’ (π β π΄ β πΌ) & β’ (π β π΅ β πΌ) & β’ (π β ((πβπ΄) + (πβπ΅)) = ((πβπ΅) + (πβπ΄))) β β’ (π β π΄ = π΅) | ||
Theorem | frgpnabl 19829 | The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ πΊ = (freeGrpβπΌ) β β’ (1o βΊ πΌ β Β¬ πΊ β Abel) | ||
Theorem | imasabl 19830* | The image structure of an abelian group is an abelian group (imasgrp 19011 analog). (Contributed by AV, 22-Feb-2025.) |
β’ (π β π = (πΉ βs π )) & β’ (π β π = (Baseβπ )) & β’ (π β + = (+gβπ )) & β’ (π β πΉ:πβontoβπ΅) & β’ ((π β§ (π β π β§ π β π) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π + π)) = (πΉβ(π + π)))) & β’ (π β π β Abel) & β’ 0 = (0gβπ ) β β’ (π β (π β Abel β§ (πΉβ 0 ) = (0gβπ))) | ||
Syntax | ccyg 19831 | Cyclic group. |
class CycGrp | ||
Definition | df-cyg 19832* | Define a cyclic group, which is a group with an element π₯, called the generator of the group, such that all elements in the group are multiples of π₯. A generator is usually not unique. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ CycGrp = {π β Grp β£ βπ₯ β (Baseβπ)ran (π β β€ β¦ (π(.gβπ)π₯)) = (Baseβπ)} | ||
Theorem | iscyg 19833* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) β β’ (πΊ β CycGrp β (πΊ β Grp β§ βπ₯ β π΅ ran (π β β€ β¦ (π Β· π₯)) = π΅)) | ||
Theorem | iscyggen 19834* | The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} β β’ (π β πΈ β (π β π΅ β§ ran (π β β€ β¦ (π Β· π)) = π΅)) | ||
Theorem | iscyggen2 19835* | The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} β β’ (πΊ β Grp β (π β πΈ β (π β π΅ β§ βπ¦ β π΅ βπ β β€ π¦ = (π Β· π)))) | ||
Theorem | iscyg2 19836* | A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} β β’ (πΊ β CycGrp β (πΊ β Grp β§ πΈ β β )) | ||
Theorem | cyggeninv 19837* | The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} & β’ π = (invgβπΊ) β β’ ((πΊ β Grp β§ π β πΈ) β (πβπ) β πΈ) | ||
Theorem | cyggenod 19838* | An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} & β’ π = (odβπΊ) β β’ ((πΊ β Grp β§ π΅ β Fin) β (π β πΈ β (π β π΅ β§ (πβπ) = (β―βπ΅)))) | ||
Theorem | cyggenod2 19839* | In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} & β’ π = (odβπΊ) β β’ ((πΊ β Grp β§ π β πΈ) β (πβπ) = if(π΅ β Fin, (β―βπ΅), 0)) | ||
Theorem | iscyg3 19840* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) β β’ (πΊ β CycGrp β (πΊ β Grp β§ βπ₯ β π΅ βπ¦ β π΅ βπ β β€ π¦ = (π Β· π₯))) | ||
Theorem | iscygd 19841* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β πΊ β Grp) & β’ (π β π β π΅) & β’ ((π β§ π¦ β π΅) β βπ β β€ π¦ = (π Β· π)) β β’ (π β πΊ β CycGrp) | ||
Theorem | iscygodd 19842 | Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ π = (odβπΊ) & β’ (π β πΊ β Grp) & β’ (π β π β π΅) & β’ (π β (πβπ) = (β―βπ΅)) β β’ (π β πΊ β CycGrp) | ||
Theorem | cycsubmcmn 19843* | The set of nonnegative integer powers of an element π΄ of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ πΉ = (π₯ β β0 β¦ (π₯ Β· π΄)) & β’ πΆ = ran πΉ β β’ ((πΊ β Mnd β§ π΄ β π΅) β (πΊ βΎs πΆ) β CMnd) | ||
Theorem | cyggrp 19844 | A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ (πΊ β CycGrp β πΊ β Grp) | ||
Theorem | cygabl 19845 | A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 20-Jan-2024.) |
β’ (πΊ β CycGrp β πΊ β Abel) | ||
Theorem | cygctb 19846 | A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) β β’ (πΊ β CycGrp β π΅ βΌ Ο) | ||
Theorem | 0cyg 19847 | The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) β β’ ((πΊ β Grp β§ π΅ β 1o) β πΊ β CycGrp) | ||
Theorem | prmcyg 19848 | A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
β’ π΅ = (BaseβπΊ) β β’ ((πΊ β Grp β§ (β―βπ΅) β β) β πΊ β CycGrp) | ||
Theorem | lt6abl 19849 | A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.) |
β’ π΅ = (BaseβπΊ) β β’ ((πΊ β Grp β§ (β―βπ΅) < 6) β πΊ β Abel) | ||
Theorem | ghmcyg 19850 | The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ πΆ = (Baseβπ») β β’ ((πΉ β (πΊ GrpHom π») β§ πΉ:π΅βontoβπΆ) β (πΊ β CycGrp β π» β CycGrp)) | ||
Theorem | cyggex2 19851 | The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ πΈ = (gExβπΊ) β β’ (πΊ β CycGrp β πΈ = if(π΅ β Fin, (β―βπ΅), 0)) | ||
Theorem | cyggex 19852 | The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ πΈ = (gExβπΊ) β β’ ((πΊ β CycGrp β§ π΅ β Fin) β πΈ = (β―βπ΅)) | ||
Theorem | cyggexb 19853 | A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ πΈ = (gExβπΊ) β β’ ((πΊ β Abel β§ π΅ β Fin) β (πΊ β CycGrp β πΈ = (β―βπ΅))) | ||
Theorem | giccyg 19854 | Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ (πΊ βπ π» β (πΊ β CycGrp β π» β CycGrp)) | ||
Theorem | cycsubgcyg 19855* | The cyclic subgroup generated by π΄ is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
β’ π = (BaseβπΊ) & β’ Β· = (.gβπΊ) & β’ π = ran (π₯ β β€ β¦ (π₯ Β· π΄)) β β’ ((πΊ β Grp β§ π΄ β π) β (πΊ βΎs π) β CycGrp) | ||
Theorem | cycsubgcyg2 19856 | The cyclic subgroup generated by π΄ is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ πΎ = (mrClsβ(SubGrpβπΊ)) β β’ ((πΊ β Grp β§ π΄ β π΅) β (πΊ βΎs (πΎβ{π΄})) β CycGrp) | ||
Theorem | gsumval3a 19857* | Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β π β Fin) & β’ (π β π β β ) & β’ π = (πΉ supp 0 ) & β’ (π β Β¬ π΄ β ran ...) β β’ (π β (πΊ Ξ£g πΉ) = (β©π₯βπ(π:(1...(β―βπ))β1-1-ontoβπ β§ π₯ = (seq1( + , (πΉ β π))β(β―βπ))))) | ||
Theorem | gsumval3eu 19858* | The group sum as defined in gsumval3a 19857 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π β π΄) β β’ (π β β!π₯βπ(π:(1...(β―βπ))β1-1-ontoβπ β§ π₯ = (seq1( + , (πΉ β π))β(β―βπ)))) | ||
Theorem | gsumval3lem1 19859* | Lemma 1 for gsumval3 19861. (Contributed by AV, 31-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β π β β) & β’ (π β π»:(1...π)β1-1βπ΄) & β’ (π β (πΉ supp 0 ) β ran π») & β’ π = ((πΉ β π») supp 0 ) β β’ (((π β§ π β β ) β§ (Β¬ π΄ β ran ... β§ π Isom < , < ((1...(β―βπ)), π))) β (π» β π):(1...(β―β(πΉ supp 0 )))β1-1-ontoβ(πΉ supp 0 )) | ||
Theorem | gsumval3lem2 19860* | Lemma 2 for gsumval3 19861. (Contributed by AV, 31-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β π β β) & β’ (π β π»:(1...π)β1-1βπ΄) & β’ (π β (πΉ supp 0 ) β ran π») & β’ π = ((πΉ β π») supp 0 ) β β’ (((π β§ π β β ) β§ (Β¬ π΄ β ran ... β§ π Isom < , < ((1...(β―βπ)), π))) β (πΊ Ξ£g πΉ) = (seq1( + , (πΉ β (π» β π)))β(β―βπ))) | ||
Theorem | gsumval3 19861 | Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β π β β) & β’ (π β π»:(1...π)β1-1βπ΄) & β’ (π β (πΉ supp 0 ) β ran π») & β’ π = ((πΉ β π») supp 0 ) β β’ (π β (πΊ Ξ£g πΉ) = (seq1( + , (πΉ β π»))βπ)) | ||
Theorem | gsumcllem 19862* | Lemma for gsumcl 19869 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π΄ β π) & β’ (π β π β π) & β’ (π β (πΉ supp π) β π) β β’ ((π β§ π = β ) β πΉ = (π β π΄ β¦ π)) | ||
Theorem | gsumzres 19863 | Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β (πΉ supp 0 ) β π) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΉ βΎ π)) = (πΊ Ξ£g πΉ)) | ||
Theorem | gsumzcl2 19864 | Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 19865, because it is not required that πΉ is a function (actually, the hypothesis always holds for any proper class πΉ). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β (πΉ supp 0 ) β Fin) β β’ (π β (πΊ Ξ£g πΉ) β π΅) | ||
Theorem | gsumzcl 19865 | Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) β π΅) | ||
Theorem | gsumzf1o 19866 | Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) & β’ (π β π»:πΆβ1-1-ontoβπ΄) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (πΉ β π»))) | ||
Theorem | gsumres 19867 | Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β (πΉ supp 0 ) β π) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΉ βΎ π)) = (πΊ Ξ£g πΉ)) | ||
Theorem | gsumcl2 19868 | Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl 19869, because it is not required that πΉ is a function (actually, the hypothesis always holds for any proper class πΉ). (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β (πΉ supp 0 ) β Fin) β β’ (π β (πΊ Ξ£g πΉ) β π΅) | ||
Theorem | gsumcl 19869 | Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) β π΅) | ||
Theorem | gsumf1o 19870 | Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) & β’ (π β π»:πΆβ1-1-ontoβπ΄) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (πΉ β π»))) | ||
Theorem | gsumreidx 19871 | Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with π = 1. (Contributed by AV, 26-Dec-2023.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ:(π...π)βΆπ΅) & β’ (π β π»:(π...π)β1-1-ontoβ(π...π)) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (πΉ β π»))) | ||
Theorem | gsumzsubmcl 19872 | Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β π β (SubMndβπΊ)) & β’ (π β πΉ:π΄βΆπ) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) β π) | ||
Theorem | gsumsubmcl 19873 | Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β π β (SubMndβπΊ)) & β’ (π β πΉ:π΄βΆπ) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) β π) | ||
Theorem | gsumsubgcl 19874 | Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) |
β’ 0 = (0gβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ (π β π β (SubGrpβπΊ)) & β’ (π β πΉ:π΄βΆπ) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) β π) | ||
Theorem | gsumzaddlem 19875* | The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) & β’ π = ((πΉ βͺ π») supp 0 ) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π»:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β ran π» β (πβran π»)) & β’ (π β ran (πΉ βf + π») β (πβran (πΉ βf + π»))) & β’ ((π β§ (π₯ β π΄ β§ π β (π΄ β π₯))) β (πΉβπ) β (πβ{(πΊ Ξ£g (π» βΎ π₯))})) β β’ (π β (πΊ Ξ£g (πΉ βf + π»)) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»))) | ||
Theorem | gsumzadd 19876 | The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) & β’ (π β π β (SubMndβπΊ)) & β’ (π β π β (πβπ)) & β’ (π β πΉ:π΄βΆπ) & β’ (π β π»:π΄βΆπ) β β’ (π β (πΊ Ξ£g (πΉ βf + π»)) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»))) | ||
Theorem | gsumadd 19877 | The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π»:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΉ βf + π»)) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»))) | ||
Theorem | gsummptfsadd 19878* | The sum of two group sums expressed as mappings. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 9-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β π΅) & β’ (π β πΉ = (π₯ β π΄ β¦ πΆ)) & β’ (π β π» = (π₯ β π΄ β¦ π·)) & β’ (π β πΉ finSupp 0 ) & β’ (π β π» finSupp 0 ) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ (πΆ + π·))) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»))) | ||
Theorem | gsummptfidmadd 19879* | The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β π΅) & β’ πΉ = (π₯ β π΄ β¦ πΆ) & β’ π» = (π₯ β π΄ β¦ π·) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ (πΆ + π·))) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»))) | ||
Theorem | gsummptfidmadd2 19880* | The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β π΅) & β’ πΉ = (π₯ β π΄ β¦ πΆ) & β’ π» = (π₯ β π΄ β¦ π·) β β’ (π β (πΊ Ξ£g (πΉ βf + π»)) = ((πΊ Ξ£g πΉ) + (πΊ Ξ£g π»))) | ||
Theorem | gsumzsplit 19881 | Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) & β’ (π β (πΆ β© π·) = β ) & β’ (π β π΄ = (πΆ βͺ π·)) β β’ (π β (πΊ Ξ£g πΉ) = ((πΊ Ξ£g (πΉ βΎ πΆ)) + (πΊ Ξ£g (πΉ βΎ π·)))) | ||
Theorem | gsumsplit 19882 | Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) & β’ (π β (πΆ β© π·) = β ) & β’ (π β π΄ = (πΆ βͺ π·)) β β’ (π β (πΊ Ξ£g πΉ) = ((πΊ Ξ£g (πΉ βΎ πΆ)) + (πΊ Ξ£g (πΉ βΎ π·)))) | ||
Theorem | gsumsplit2 19883* | Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β (πΆ β© π·) = β ) & β’ (π β π΄ = (πΆ βͺ π·)) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ π)) = ((πΊ Ξ£g (π β πΆ β¦ π)) + (πΊ Ξ£g (π β π· β¦ π)))) | ||
Theorem | gsummptfidmsplit 19884* | Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (πΆ β© π·) = β ) & β’ (π β π΄ = (πΆ βͺ π·)) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ π)) = ((πΊ Ξ£g (π β πΆ β¦ π)) + (πΊ Ξ£g (π β π· β¦ π)))) | ||
Theorem | gsummptfidmsplitres 19885* | Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (πΆ β© π·) = β ) & β’ (π β π΄ = (πΆ βͺ π·)) & β’ πΉ = (π β π΄ β¦ π) β β’ (π β (πΊ Ξ£g πΉ) = ((πΊ Ξ£g (πΉ βΎ πΆ)) + (πΊ Ξ£g (πΉ βΎ π·)))) | ||
Theorem | gsummptfzsplit 19886* | Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β β0) & β’ ((π β§ π β (0...(π + 1))) β π β π΅) β β’ (π β (πΊ Ξ£g (π β (0...(π + 1)) β¦ π)) = ((πΊ Ξ£g (π β (0...π) β¦ π)) + (πΊ Ξ£g (π β {(π + 1)} β¦ π)))) | ||
Theorem | gsummptfzsplitl 19887* | Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β β0) & β’ ((π β§ π β (0...π)) β π β π΅) β β’ (π β (πΊ Ξ£g (π β (0...π) β¦ π)) = ((πΊ Ξ£g (π β (1...π) β¦ π)) + (πΊ Ξ£g (π β {0} β¦ π)))) | ||
Theorem | gsumconst 19888* | Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) β β’ ((πΊ β Mnd β§ π΄ β Fin β§ π β π΅) β (πΊ Ξ£g (π β π΄ β¦ π)) = ((β―βπ΄) Β· π)) | ||
Theorem | gsumconstf 19889* | Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
β’ β²ππ & β’ π΅ = (BaseβπΊ) & β’ Β· = (.gβπΊ) β β’ ((πΊ β Mnd β§ π΄ β Fin β§ π β π΅) β (πΊ Ξ£g (π β π΄ β¦ π)) = ((β―βπ΄) Β· π)) | ||
Theorem | gsummptshft 19890* | Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΎ β β€) & β’ (π β π β β€) & β’ (π β π β β€) & β’ ((π β§ π β (π...π)) β π΄ β π΅) & β’ (π = (π β πΎ) β π΄ = πΆ) β β’ (π β (πΊ Ξ£g (π β (π...π) β¦ π΄)) = (πΊ Ξ£g (π β ((π + πΎ)...(π + πΎ)) β¦ πΆ))) | ||
Theorem | gsumzmhm 19891 | Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ π = (CntzβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β πΎ β (πΊ MndHom π»)) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ 0 = (0gβπΊ) & β’ (π β πΉ finSupp 0 ) β β’ (π β (π» Ξ£g (πΎ β πΉ)) = (πΎβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsummhm 19892 | Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β πΎ β (πΊ MndHom π»)) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (π» Ξ£g (πΎ β πΉ)) = (πΎβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsummhm2 19893* | Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β (π₯ β π΅ β¦ πΆ) β (πΊ MndHom π»)) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π₯ = π β πΆ = π·) & β’ (π₯ = (πΊ Ξ£g (π β π΄ β¦ π)) β πΆ = πΈ) β β’ (π β (π» Ξ£g (π β π΄ β¦ π·)) = πΈ) | ||
Theorem | gsummptmhm 19894* | Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018.) (Revised by AV, 8-Sep-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π» β Mnd) & β’ (π β π΄ β π) & β’ (π β πΎ β (πΊ MndHom π»)) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ (π β (π₯ β π΄ β¦ πΆ) finSupp 0 ) β β’ (π β (π» Ξ£g (π₯ β π΄ β¦ (πΎβπΆ))) = (πΎβ(πΊ Ξ£g (π₯ β π΄ β¦ πΆ)))) | ||
Theorem | gsummulglem 19895* | Lemma for gsummulg 19896 and gsummulgz 19897. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β CMnd) & β’ (π β π β β€) & β’ (π β (πΊ β Abel β¨ π β β0)) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsummulg 19896* | Nonnegative multiple of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β CMnd) & β’ (π β π β β0) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsummulgz 19897* | Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π β π΅) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) & β’ (π β πΊ β Abel) & β’ (π β π β β€) β β’ (π β (πΊ Ξ£g (π β π΄ β¦ (π Β· π))) = (π Β· (πΊ Ξ£g (π β π΄ β¦ π)))) | ||
Theorem | gsumzoppg 19898 | The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ π = (oppgβπΊ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (π Ξ£g πΉ) = (πΊ Ξ£g πΉ)) | ||
Theorem | gsumzinv 19899 | Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (CntzβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Grp) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β ran πΉ β (πβran πΉ)) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) | ||
Theorem | gsuminv 19900 | Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 4-May-2015.) (Revised by AV, 6-Jun-2019.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ πΌ = (invgβπΊ) & β’ (π β πΊ β Abel) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |