| Metamath
Proof Explorer Theorem List (p. 199 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pwsabl 19801 | The structure power on an Abelian group is Abelian. (Contributed by Mario Carneiro, 21-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Abel) | ||
| Theorem | qusabl 19802 | If 𝑌 is a subgroup of the abelian group 𝐺, then 𝐻 = 𝐺 / 𝑌 is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) | ||
| Theorem | abl1 19803 | The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) | ||
| Theorem | abln0 19804 | Abelian groups (and therefore also groups and monoids) exist. (Contributed by AV, 29-Apr-2019.) |
| ⊢ Abel ≠ ∅ | ||
| Theorem | cnaddablx 19805 | The complex numbers are an Abelian group under addition. This version of cnaddabl 19806 shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl 19806 instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012.) |
| ⊢ 𝐺 = {〈1, ℂ〉, 〈2, + 〉} ⇒ ⊢ 𝐺 ∈ Abel | ||
| Theorem | cnaddabl 19806 | The complex numbers are an Abelian group under addition. This version of cnaddablx 19805 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 21309. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 ∈ Abel | ||
| Theorem | cnaddid 19807 | The group identity element of complex number addition is zero. See also cnfld0 21311. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (0g‘𝐺) = 0 | ||
| Theorem | cnaddinv 19808 | Value of the group inverse of complex number addition. See also cnfldneg 21314. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐴 ∈ ℂ → ((invg‘𝐺)‘𝐴) = -𝐴) | ||
| Theorem | zaddablx 19809 | The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg 21344 instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| ⊢ 𝐺 = {〈1, ℤ〉, 〈2, + 〉} ⇒ ⊢ 𝐺 ∈ Abel | ||
| Theorem | frgpnabllem1 19810* | Lemma for frgpnabl 19812. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝐺) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) & ⊢ (𝜑 → 𝐵 ∈ 𝐼) ⇒ ⊢ (𝜑 → 〈“〈𝐴, ∅〉〈𝐵, ∅〉”〉 ∈ (𝐷 ∩ ((𝑈‘𝐴) + (𝑈‘𝐵)))) | ||
| Theorem | frgpnabllem2 19811* | Lemma for frgpnabl 19812. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 25-Apr-2024.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝐺) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) & ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) & ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) & ⊢ (𝜑 → 𝐵 ∈ 𝐼) & ⊢ (𝜑 → ((𝑈‘𝐴) + (𝑈‘𝐵)) = ((𝑈‘𝐵) + (𝑈‘𝐴))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | frgpnabl 19812 | The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) | ||
| Theorem | imasabl 19813* | The image structure of an abelian group is an abelian group (imasgrp 18995 analog). (Contributed by AV, 22-Feb-2025.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Abel) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Abel ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Syntax | ccyg 19814 | Cyclic group. |
| class CycGrp | ||
| Definition | df-cyg 19815* | Define a cyclic group, which is a group with an element 𝑥, called the generator of the group, such that all elements in the group are multiples of 𝑥. A generator is usually not unique. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} | ||
| Theorem | iscyg 19816* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) | ||
| Theorem | iscyggen 19817* | The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ⇒ ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) | ||
| Theorem | iscyggen2 19818* | The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ⇒ ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) | ||
| Theorem | iscyg2 19819* | A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ⇒ ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅)) | ||
| Theorem | cyggeninv 19820* | The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑁‘𝑋) ∈ 𝐸) | ||
| Theorem | cyggenod 19821* | An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) | ||
| Theorem | cyggenod2 19822* | In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → (𝑂‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) | ||
| Theorem | iscyg3 19823* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥))) | ||
| Theorem | iscygd 19824* | Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CycGrp) | ||
| Theorem | iscygodd 19825 | Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CycGrp) | ||
| Theorem | cycsubmcmn 19826* | The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) | ||
| Theorem | cyggrp 19827 | A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | ||
| Theorem | cygabl 19828 | A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 20-Jan-2024.) |
| ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Abel) | ||
| Theorem | cygctb 19829 | A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) | ||
| Theorem | 0cyg 19830 | The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) | ||
| Theorem | prmcyg 19831 | A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp) | ||
| Theorem | lt6abl 19832 | A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (♯‘𝐵) < 6) → 𝐺 ∈ Abel) | ||
| Theorem | ghmcyg 19833 | The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = (Base‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝐹:𝐵–onto→𝐶) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) | ||
| Theorem | cyggex2 19834 | The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) | ||
| Theorem | cyggex 19835 | The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin) → 𝐸 = (♯‘𝐵)) | ||
| Theorem | cyggexb 19836 | A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) | ||
| Theorem | giccyg 19837 | Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) | ||
| Theorem | cycsubgcyg 19838* | The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐺 ↾s 𝑆) ∈ CycGrp) | ||
| Theorem | cycsubgcyg2 19839 | The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s (𝐾‘{𝐴})) ∈ CycGrp) | ||
| Theorem | gsumval3a 19840* | Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → 𝑊 ≠ ∅) & ⊢ 𝑊 = (𝐹 supp 0 ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ran ...) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | ||
| Theorem | gsumval3eu 19841* | The group sum as defined in gsumval3a 19840 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → 𝑊 ≠ ∅) & ⊢ (𝜑 → 𝑊 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) | ||
| Theorem | gsumval3lem1 19842* | Lemma 1 for gsumval3 19844. (Contributed by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) & ⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) ⇒ ⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) | ||
| Theorem | gsumval3lem2 19843* | Lemma 2 for gsumval3 19844. (Contributed by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) & ⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) ⇒ ⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))‘(♯‘𝑊))) | ||
| Theorem | gsumval3 19844 | Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) & ⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))‘𝑀)) | ||
| Theorem | gsumcllem 19845* | Lemma for gsumcl 19852 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑍)) | ||
| Theorem | gsumzres 19846 | Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹)) | ||
| Theorem | gsumzcl2 19847 | Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 19848, because it is not required that 𝐹 is a function (actually, the hypothesis always holds for any proper class 𝐹). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumzcl 19848 | Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumzf1o 19849 | Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
| Theorem | gsumres 19850 | Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹)) | ||
| Theorem | gsumcl2 19851 | Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl 19852, because it is not required that 𝐹 is a function (actually, the hypothesis always holds for any proper class 𝐹). (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumcl 19852 | Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) | ||
| Theorem | gsumf1o 19853 | Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
| Theorem | gsumreidx 19854 | Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with 𝑀 = 1. (Contributed by AV, 26-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) & ⊢ (𝜑 → 𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
| Theorem | gsumzsubmcl 19855 | Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) | ||
| Theorem | gsumsubmcl 19856 | Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) | ||
| Theorem | gsumsubgcl 19857 | Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) |
| ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) | ||
| Theorem | gsumzaddlem 19858* | The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻 finSupp 0 ) & ⊢ 𝑊 = ((𝐹 ∪ 𝐻) supp 0 ) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) & ⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| Theorem | gsumzadd 19859 | The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻 finSupp 0 ) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑆)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| Theorem | gsumadd 19860 | The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| Theorem | gsummptfsadd 19861* | The sum of two group sums expressed as mappings. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 9-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) & ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| Theorem | gsummptfidmadd 19862* | The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| Theorem | gsummptfidmadd2 19863* | The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) | ||
| Theorem | gsumzsplit 19864 | Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) | ||
| Theorem | gsumsplit 19865 | Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) | ||
| Theorem | gsumsplit2 19866* | Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) | ||
| Theorem | gsummptfidmsplit 19867* | Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑌)))) | ||
| Theorem | gsummptfidmsplitres 19868* | Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) & ⊢ 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) | ||
| Theorem | gsummptfzsplit 19869* | Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ 𝑌)))) | ||
| Theorem | gsummptfzsplitl 19870* | Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) | ||
| Theorem | gsumconst 19871* | Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) | ||
| Theorem | gsumconstf 19872* | Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| ⊢ Ⅎ𝑘𝑋 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) | ||
| Theorem | gsummptshft 19873* | Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) | ||
| Theorem | gsumzmhm 19874 | Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) | ||
| Theorem | gsummhm 19875 | Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) | ||
| Theorem | gsummhm2 19876* | Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) & ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷)) = 𝐸) | ||
| Theorem | gsummptmhm 19877* | Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018.) (Revised by AV, 8-Sep-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶))) = (𝐾‘(𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)))) | ||
| Theorem | gsummulglem 19878* | Lemma for gsummulg 19879 and gsummulgz 19880. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝐺 ∈ Abel ∨ 𝑁 ∈ ℕ0)) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ (𝑁 · 𝑋))) = (𝑁 · (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
| Theorem | gsummulg 19879* | Nonnegative multiple of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ (𝑁 · 𝑋))) = (𝑁 · (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
| Theorem | gsummulgz 19880* | Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ (𝑁 · 𝑋))) = (𝑁 · (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
| Theorem | gsumzoppg 19881 | The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑂 = (oppg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑂 Σg 𝐹) = (𝐺 Σg 𝐹)) | ||
| Theorem | gsumzinv 19882 | Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) | ||
| Theorem | gsuminv 19883 | Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 4-May-2015.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) | ||
| Theorem | gsummptfidminv 19884* | Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) | ||
| Theorem | gsumsub 19885 | The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) | ||
| Theorem | gsummptfssub 19886* | The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) & ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝐻 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) | ||
| Theorem | gsummptfidmsub 19887* | The difference of two group sums expressed as mappings with finite domain. (Contributed by AV, 7-Nov-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) | ||
| Theorem | gsumsnfd 19888* | Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) & ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐶 ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) | ||
| Theorem | gsumsnd 19889* | Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof shortened by AV, 11-Dec-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) | ||
| Theorem | gsumsnf 19890* | Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝐶 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) | ||
| Theorem | gsumsn 19891* | Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 11-Dec-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) | ||
| Theorem | gsumpr 19892* | Group sum of a pair. (Contributed by AV, 6-Dec-2018.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ∧ 𝑀 ≠ 𝑁) ∧ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷)) | ||
| Theorem | gsumzunsnd 19893* | Append an element to a finite group sum, more general version of gsumunsnd 19895. (Contributed by AV, 7-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
| Theorem | gsumunsnfd 19894* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) & ⊢ Ⅎ𝑘𝑌 ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
| Theorem | gsumunsnd 19895* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 2-Jan-2019.) (Proof shortened by AV, 11-Dec-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
| Theorem | gsumunsnf 19896* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
| ⊢ Ⅎ𝑘𝑌 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
| Theorem | gsumunsn 19897* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Proof shortened by AV, 8-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
| Theorem | gsumdifsnd 19898* | Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) | ||
| Theorem | gsumpt 19899 | Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋}) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐹‘𝑋)) | ||
| Theorem | gsummptf1o 19900* | Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
| ⊢ Ⅎ𝑥𝐻 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |