![]() |
Metamath
Proof Explorer Theorem List (p. 199 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frgpcpbl 19801 | Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷)) | ||
Theorem | frgp0 19802 | The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐺 ∈ Grp ∧ [∅] ∼ = (0g‘𝐺))) | ||
Theorem | frgpeccl 19803 | Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ 𝐵) | ||
Theorem | frgpgrp 19804 | The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐺 ∈ Grp) | ||
Theorem | frgpadd 19805 | Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ([𝐴] ∼ + [𝐵] ∼ ) = [(𝐴 ++ 𝐵)] ∼ ) | ||
Theorem | frgpinv 19806* | The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ (𝐴 ∈ 𝑊 → (𝑁‘[𝐴] ∼ ) = [(𝑀 ∘ (reverse‘𝐴))] ∼ ) | ||
Theorem | frgpmhm 19807* | The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑀 = (freeMnd‘(𝐼 × 2o)) & ⊢ 𝑊 = (Base‘𝑀) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐹 = (𝑥 ∈ 𝑊 ↦ [𝑥] ∼ ) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐹 ∈ (𝑀 MndHom 𝐺)) | ||
Theorem | vrgpfval 19808* | The canonical injection from the generating set 𝐼 to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) | ||
Theorem | vrgpval 19809 | The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) | ||
Theorem | vrgpf 19810 | The mapping from the index set to the generators is a function into the free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶𝑋) | ||
Theorem | vrgpinv 19811 | The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1o〉”〉] ∼ ) | ||
Theorem | frgpuptf 19812* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) ⇒ ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) | ||
Theorem | frgpuptinv 19813* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴))) | ||
Theorem | frgpuplem 19814* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∼ 𝐶) → (𝐻 Σg (𝑇 ∘ 𝐴)) = (𝐻 Σg (𝑇 ∘ 𝐶))) | ||
Theorem | frgpupf 19815* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) | ||
Theorem | frgpupval 19816* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑊) → (𝐸‘[𝐴] ∼ ) = (𝐻 Σg (𝑇 ∘ 𝐴))) | ||
Theorem | frgpup1 19817* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐺 GrpHom 𝐻)) | ||
Theorem | frgpup2 19818* | The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) | ||
Theorem | frgpup3lem 19819* | The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑁 = (invg‘𝐻) & ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) & ⊢ (𝜑 → 𝐻 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) & ⊢ ∼ = ( ~FG ‘𝐼) & ⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) & ⊢ 𝑈 = (varFGrp‘𝐼) & ⊢ (𝜑 → 𝐾 ∈ (𝐺 GrpHom 𝐻)) & ⊢ (𝜑 → (𝐾 ∘ 𝑈) = 𝐹) ⇒ ⊢ (𝜑 → 𝐾 = 𝐸) | ||
Theorem | frgpup3 19820* | Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
⊢ 𝐺 = (freeGrp‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝑈 = (varFGrp‘𝐼) ⇒ ⊢ ((𝐻 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝐺 GrpHom 𝐻)(𝑚 ∘ 𝑈) = 𝐹) | ||
Theorem | 0frgp 19821 | The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐺 = (freeGrp‘∅) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 ≈ 1o | ||
Syntax | ccmn 19822 | Extend class notation with class of all commutative monoids. |
class CMnd | ||
Syntax | cabl 19823 | Extend class notation with class of all Abelian groups. |
class Abel | ||
Definition | df-cmn 19824* | Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} | ||
Definition | df-abl 19825 | Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ Abel = (Grp ∩ CMnd) | ||
Theorem | isabl 19826 | The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | ||
Theorem | ablgrp 19827 | An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | ||
Theorem | ablgrpd 19828 | An Abelian group is a group, deduction form of ablgrp 19827. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) | ||
Theorem | ablcmn 19829 | An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | ||
Theorem | ablcmnd 19830 | An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) | ||
Theorem | iscmn 19831* | The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
Theorem | isabl2 19832* | The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
Theorem | cmnpropd 19833* | If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) | ||
Theorem | ablpropd 19834* | If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) | ||
Theorem | ablprop 19835 | If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel) | ||
Theorem | iscmnd 19836* | Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) | ||
Theorem | isabld 19837* | Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ Abel) | ||
Theorem | isabli 19838* | Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
⊢ 𝐺 ∈ Grp & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ 𝐺 ∈ Abel | ||
Theorem | cmnmnd 19839 | A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | ||
Theorem | cmncom 19840 | A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | ablcom 19841 | An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | cmn32 19842 | Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) | ||
Theorem | cmn4 19843 | Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
Theorem | cmn12 19844 | Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) | ||
Theorem | abl32 19845 | Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) | ||
Theorem | cmnmndd 19846 | A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝐺 ∈ CMnd) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
Theorem | cmnbascntr 19847 | The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) ⇒ ⊢ (𝐺 ∈ CMnd → 𝐵 = 𝑍) | ||
Theorem | rinvmod 19848* | Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo 7687. (Contributed by AV, 31-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) | ||
Theorem | ablinvadd 19849 | The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) | ||
Theorem | ablsub2inv 19850 | Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) | ||
Theorem | ablsubadd 19851 | Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) | ||
Theorem | ablsub4 19852 | Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) | ||
Theorem | abladdsub4 19853 | Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) | ||
Theorem | abladdsub 19854 | Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 − 𝑍) + 𝑌)) | ||
Theorem | ablsubadd23 19855 | Commutative/associative law for addition and subtraction in abelian groups. (subadd23d 11669 analog.) (Contributed by AV, 2-Mar-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) + 𝑍) = (𝑋 + (𝑍 − 𝑌))) | ||
Theorem | ablsubaddsub 19856 | Double subtraction and addition in abelian groups. (cnambpcma 47209 analog.) (Contributed by AV, 3-Mar-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 − 𝑌) + 𝑍) − 𝑋) = (𝑍 − 𝑌)) | ||
Theorem | ablpncan2 19857 | Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) | ||
Theorem | ablpncan3 19858 | A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑋)) = 𝑌) | ||
Theorem | ablsubsub 19859 | Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) | ||
Theorem | ablsubsub4 19860 | Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) | ||
Theorem | ablpnpcan 19861 | Cancellation law for mixed addition and subtraction. (pnpcan 11575 analog.) (Contributed by NM, 29-May-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) | ||
Theorem | ablnncan 19862 | Cancellation law for group subtraction. (nncan 11565 analog.) (Contributed by NM, 7-Apr-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) | ||
Theorem | ablsub32 19863 | Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) | ||
Theorem | ablnnncan 19864 | Cancellation law for group subtraction. (nnncan 11571 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) | ||
Theorem | ablnnncan1 19865 | Cancellation law for group subtraction. (nnncan1 11572 analog.) (Contributed by NM, 7-Apr-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) | ||
Theorem | ablsubsub23 19866 | Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | ||
Theorem | mulgnn0di 19867 | Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) | ||
Theorem | mulgdi 19868 | Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) | ||
Theorem | mulgmhm 19869* | The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺)) | ||
Theorem | mulgghm 19870* | The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) | ||
Theorem | mulgsubdi 19871 | Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 − 𝑌)) = ((𝑀 · 𝑋) − (𝑀 · 𝑌))) | ||
Theorem | ghmfghm 19872* | The function fulfilling the conditions of ghmgrp 19106 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
Theorem | ghmcmn 19873* | The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ CMnd) ⇒ ⊢ (𝜑 → 𝐻 ∈ CMnd) | ||
Theorem | ghmabl 19874* | The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐻 ∈ Abel) | ||
Theorem | invghm 19875 | The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺)) | ||
Theorem | eqgabl 19876 | Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) | ||
Theorem | qusecsub 19877 | Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) | ||
Theorem | subgabl 19878 | A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) | ||
Theorem | subcmn 19879 | A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) | ||
Theorem | submcmn 19880 | A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ CMnd) | ||
Theorem | submcmn2 19881 | A submonoid is commutative iff it is a subset of its own centralizer. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐻 ∈ CMnd ↔ 𝑆 ⊆ (𝑍‘𝑆))) | ||
Theorem | cntzcmn 19882 | The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) | ||
Theorem | cntzcmnss 19883 | Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆)) | ||
Theorem | cntrcmnd 19884 | The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) ⇒ ⊢ (𝑀 ∈ Mnd → 𝑍 ∈ CMnd) | ||
Theorem | cntrabl 19885 | The center of a group is an abelian group. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝑍 = (𝑀 ↾s (Cntr‘𝑀)) ⇒ ⊢ (𝑀 ∈ Grp → 𝑍 ∈ Abel) | ||
Theorem | cntzspan 19886 | If the generators commute, the generated monoid is commutative. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) & ⊢ 𝐻 = (𝐺 ↾s (𝐾‘𝑆)) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ (𝑍‘𝑆)) → 𝐻 ∈ CMnd) | ||
Theorem | cntzcmnf 19887 | Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | ||
Theorem | ghmplusg 19888 | The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ + = (+g‘𝑁) ⇒ ⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁)) | ||
Theorem | ablnsg 19889 | Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) | ||
Theorem | odadd1 19890 | The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂‘𝐴) gcd (𝑂‘𝐵))) ∥ ((𝑂‘𝐴) · (𝑂‘𝐵))) | ||
Theorem | odadd2 19891 | The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑂‘𝐴) · (𝑂‘𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂‘𝐴) gcd (𝑂‘𝐵))↑2))) | ||
Theorem | odadd 19892 | The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑂 = (od‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑂‘𝐴) gcd (𝑂‘𝐵)) = 1) → (𝑂‘(𝐴 + 𝐵)) = ((𝑂‘𝐴) · (𝑂‘𝐵))) | ||
Theorem | gex2abl 19893 | A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel) | ||
Theorem | gexexlem 19894* | Lemma for gexex 19895. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑂‘𝑦) ≤ (𝑂‘𝐴)) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) | ||
Theorem | gexex 19895* | In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if 𝐸 = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so 𝐸 is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐸 = (gEx‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) = 𝐸) | ||
Theorem | torsubg 19896 | The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.) |
⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel → (◡𝑂 “ ℕ) ∈ (SubGrp‘𝐺)) | ||
Theorem | oddvdssubg 19897* | The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝑂 = (od‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) | ||
Theorem | lsmcomx 19898 | Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) | ||
Theorem | ablcntzd 19899 | All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | ||
Theorem | lsmcom 19900 | Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |