Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. 2
⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝐺dom DProd 𝑆) |
2 | | reldmdprd 19600 |
. . . . . 6
⊢ Rel dom
DProd |
3 | 2 | brrelex2i 5644 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
4 | 3 | adantr 481 |
. . . 4
⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝑆 ∈ V) |
5 | 2 | brrelex1i 5643 |
. . . . . 6
⊢ (𝐺dom DProd 𝑠 → 𝐺 ∈ V) |
6 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑔dom DProd 𝑠 ↔ 𝐺dom DProd 𝑠)) |
7 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔 DProd 𝑠) = (𝐺 DProd 𝑠)) |
8 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) |
9 | | dprdval.0 |
. . . . . . . . . . . . . 14
⊢ 0 =
(0g‘𝐺) |
10 | 8, 9 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
11 | 10 | breq2d 5086 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (ℎ finSupp (0g‘𝑔) ↔ ℎ finSupp 0 )) |
12 | 11 | rabbidv 3414 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} = {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 }) |
13 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (𝑔 Σg 𝑓) = (𝐺 Σg 𝑓)) |
14 | 12, 13 | mpteq12dv 5165 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) = (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓))) |
15 | 14 | rneqd 5847 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓))) |
16 | 7, 15 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑔 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ↔ (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓)))) |
17 | 6, 16 | imbi12d 345 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) ↔ (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓))))) |
18 | | df-br 5075 |
. . . . . . . . 9
⊢ (𝑔dom DProd 𝑠 ↔ 〈𝑔, 𝑠〉 ∈ dom DProd ) |
19 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠‘𝑖) ∈ V |
20 | 19 | rgenw 3076 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑖 ∈ dom
𝑠(𝑠‘𝑖) ∈ V |
21 | | ixpexg 8710 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
dom 𝑠(𝑠‘𝑖) ∈ V → X𝑖 ∈
dom 𝑠(𝑠‘𝑖) ∈ V) |
22 | 20, 21 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ X𝑖 ∈
dom 𝑠(𝑠‘𝑖) ∈ V |
23 | 22 | mptrabex 7101 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V |
24 | 23 | rnex 7759 |
. . . . . . . . . . . . 13
⊢ ran
(𝑓 ∈ {ℎ ∈ X𝑖 ∈
dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V |
25 | 24 | rgen2w 3077 |
. . . . . . . . . . . 12
⊢
∀𝑔 ∈ Grp
∀𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))}ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V |
26 | | df-dprd 19598 |
. . . . . . . . . . . . 13
⊢ DProd =
(𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
27 | 26 | fmpox 7907 |
. . . . . . . . . . . 12
⊢
(∀𝑔 ∈
Grp ∀𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))}ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd
:∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))})⟶V) |
28 | 25, 27 | mpbi 229 |
. . . . . . . . . . 11
⊢ DProd
:∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))})⟶V |
29 | 28 | fdmi 6612 |
. . . . . . . . . 10
⊢ dom DProd
= ∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))}) |
30 | 29 | eleq2i 2830 |
. . . . . . . . 9
⊢
(〈𝑔, 𝑠〉 ∈ dom DProd ↔
〈𝑔, 𝑠〉 ∈ ∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))})) |
31 | | opeliunxp 5654 |
. . . . . . . . 9
⊢
(〈𝑔, 𝑠〉 ∈ ∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))}) ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))})) |
32 | 18, 30, 31 | 3bitri 297 |
. . . . . . . 8
⊢ (𝑔dom DProd 𝑠 ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))})) |
33 | 26 | ovmpt4g 7420 |
. . . . . . . . 9
⊢ ((𝑔 ∈ Grp ∧ 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))} ∧ ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
34 | 24, 33 | mp3an3 1449 |
. . . . . . . 8
⊢ ((𝑔 ∈ Grp ∧ 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑖})(ℎ‘𝑖) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑖})))) =
{(0g‘𝑔)}))}) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
35 | 32, 34 | sylbi 216 |
. . . . . . 7
⊢ (𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
36 | 17, 35 | vtoclg 3505 |
. . . . . 6
⊢ (𝐺 ∈ V → (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓)))) |
37 | 5, 36 | mpcom 38 |
. . . . 5
⊢ (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓))) |
38 | 37 | sbcth 3731 |
. . . 4
⊢ (𝑆 ∈ V → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓)))) |
39 | 4, 38 | syl 17 |
. . 3
⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓)))) |
40 | | simpr 485 |
. . . . . 6
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
41 | 40 | breq2d 5086 |
. . . . 5
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd 𝑆)) |
42 | 40 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑆)) |
43 | 40 | dmeqd 5814 |
. . . . . . . . . . . . 13
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = dom 𝑆) |
44 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑆 = 𝐼) |
45 | 43, 44 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = 𝐼) |
46 | 45 | ixpeq1d 8697 |
. . . . . . . . . . 11
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠‘𝑖) = X𝑖 ∈ 𝐼 (𝑠‘𝑖)) |
47 | 40 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑠‘𝑖) = (𝑆‘𝑖)) |
48 | 47 | ixpeq2dv 8701 |
. . . . . . . . . . 11
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ 𝐼 (𝑠‘𝑖) = X𝑖 ∈ 𝐼 (𝑆‘𝑖)) |
49 | 46, 48 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠‘𝑖) = X𝑖 ∈ 𝐼 (𝑆‘𝑖)) |
50 | 49 | rabeqdv 3419 |
. . . . . . . . 9
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
51 | | dprdval.w |
. . . . . . . . 9
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
52 | 50, 51 | eqtr4di 2796 |
. . . . . . . 8
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } = 𝑊) |
53 | | eqidd 2739 |
. . . . . . . 8
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 Σg 𝑓) = (𝐺 Σg 𝑓)) |
54 | 52, 53 | mpteq12dv 5165 |
. . . . . . 7
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓)) = (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) |
55 | 54 | rneqd 5847 |
. . . . . 6
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓)) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) |
56 | 42, 55 | eqeq12d 2754 |
. . . . 5
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓)) ↔ (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)))) |
57 | 41, 56 | imbi12d 345 |
. . . 4
⊢ (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))))) |
58 | 4, 57 | sbcied 3761 |
. . 3
⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → ([𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑠(𝑠‘𝑖) ∣ ℎ finSupp 0 } ↦ (𝐺 Σg
𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))))) |
59 | 39, 58 | mpbid 231 |
. 2
⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓)))) |
60 | 1, 59 | mpd 15 |
1
⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) |