MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval Structured version   Visualization version   GIF version

Theorem dprdval 19521
Description: The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdval.0 0 = (0g𝐺)
dprdval.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dprdval ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
Distinct variable groups:   𝑓,,𝑖,𝐼   𝑆,𝑓,,𝑖   𝑓,𝐺,,𝑖
Allowed substitution hints:   𝑊(𝑓,,𝑖)   0 (𝑓,,𝑖)

Proof of Theorem dprdval
Dummy variables 𝑔 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝐺dom DProd 𝑆)
2 reldmdprd 19515 . . . . . 6 Rel dom DProd
32brrelex2i 5635 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
43adantr 480 . . . 4 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝑆 ∈ V)
52brrelex1i 5634 . . . . . 6 (𝐺dom DProd 𝑠𝐺 ∈ V)
6 breq1 5073 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔dom DProd 𝑠𝐺dom DProd 𝑠))
7 oveq1 7262 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑔 DProd 𝑠) = (𝐺 DProd 𝑠))
8 fveq2 6756 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 dprdval.0 . . . . . . . . . . . . . 14 0 = (0g𝐺)
108, 9eqtr4di 2797 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (0g𝑔) = 0 )
1110breq2d 5082 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ( finSupp (0g𝑔) ↔ finSupp 0 ))
1211rabbidv 3404 . . . . . . . . . . 11 (𝑔 = 𝐺 → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} = {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 })
13 oveq1 7262 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔 Σg 𝑓) = (𝐺 Σg 𝑓))
1412, 13mpteq12dv 5161 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) = (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
1514rneqd 5836 . . . . . . . . 9 (𝑔 = 𝐺 → ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
167, 15eqeq12d 2754 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ↔ (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
176, 16imbi12d 344 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓))) ↔ (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))))
18 df-br 5071 . . . . . . . . 9 (𝑔dom DProd 𝑠 ↔ ⟨𝑔, 𝑠⟩ ∈ dom DProd )
19 fvex 6769 . . . . . . . . . . . . . . . . 17 (𝑠𝑖) ∈ V
2019rgenw 3075 . . . . . . . . . . . . . . . 16 𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V
21 ixpexg 8668 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V → X𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V)
2220, 21ax-mp 5 . . . . . . . . . . . . . . 15 X𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V
2322mptrabex 7083 . . . . . . . . . . . . . 14 (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
2423rnex 7733 . . . . . . . . . . . . 13 ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
2524rgen2w 3076 . . . . . . . . . . . 12 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
26 df-dprd 19513 . . . . . . . . . . . . 13 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
2726fmpox 7880 . . . . . . . . . . . 12 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})⟶V)
2825, 27mpbi 229 . . . . . . . . . . 11 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})⟶V
2928fdmi 6596 . . . . . . . . . 10 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})
3029eleq2i 2830 . . . . . . . . 9 (⟨𝑔, 𝑠⟩ ∈ dom DProd ↔ ⟨𝑔, 𝑠⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
31 opeliunxp 5645 . . . . . . . . 9 (⟨𝑔, 𝑠⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}) ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
3218, 30, 313bitri 296 . . . . . . . 8 (𝑔dom DProd 𝑠 ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
3326ovmpt4g 7398 . . . . . . . . 9 ((𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))} ∧ ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3424, 33mp3an3 1448 . . . . . . . 8 ((𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3532, 34sylbi 216 . . . . . . 7 (𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3617, 35vtoclg 3495 . . . . . 6 (𝐺 ∈ V → (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
375, 36mpcom 38 . . . . 5 (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
3837sbcth 3726 . . . 4 (𝑆 ∈ V → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
394, 38syl 17 . . 3 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
40 simpr 484 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
4140breq2d 5082 . . . . 5 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺dom DProd 𝑠𝐺dom DProd 𝑆))
4240oveq2d 7271 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑆))
4340dmeqd 5803 . . . . . . . . . . . . 13 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = dom 𝑆)
44 simplr 765 . . . . . . . . . . . . 13 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑆 = 𝐼)
4543, 44eqtrd 2778 . . . . . . . . . . . 12 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = 𝐼)
4645ixpeq1d 8655 . . . . . . . . . . 11 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠𝑖) = X𝑖𝐼 (𝑠𝑖))
4740fveq1d 6758 . . . . . . . . . . . 12 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑠𝑖) = (𝑆𝑖))
4847ixpeq2dv 8659 . . . . . . . . . . 11 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖𝐼 (𝑠𝑖) = X𝑖𝐼 (𝑆𝑖))
4946, 48eqtrd 2778 . . . . . . . . . 10 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠𝑖) = X𝑖𝐼 (𝑆𝑖))
5049rabeqdv 3409 . . . . . . . . 9 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
51 dprdval.w . . . . . . . . 9 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
5250, 51eqtr4di 2797 . . . . . . . 8 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } = 𝑊)
53 eqidd 2739 . . . . . . . 8 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 Σg 𝑓) = (𝐺 Σg 𝑓))
5452, 53mpteq12dv 5161 . . . . . . 7 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) = (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
5554rneqd 5836 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
5642, 55eqeq12d 2754 . . . . 5 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) ↔ (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
5741, 56imbi12d 344 . . . 4 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))))
584, 57sbcied 3756 . . 3 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → ([𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))))
5939, 58mpbid 231 . 2 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
601, 59mpd 15 1 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  {crab 3067  Vcvv 3422  [wsbc 3711  cdif 3880  cin 3882  wss 3883  {csn 4558  cop 4564   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  Xcixp 8643   finSupp cfsupp 9058  0gc0g 17067   Σg cgsu 17068  mrClscmrc 17209  Grpcgrp 18492  SubGrpcsubg 18664  Cntzccntz 18836   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-ixp 8644  df-dprd 19513
This theorem is referenced by:  eldprd  19522  dprdlub  19544
  Copyright terms: Public domain W3C validator