MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval Structured version   Visualization version   GIF version

Theorem dprdval 19919
Description: The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdval.0 0 = (0g𝐺)
dprdval.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dprdval ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
Distinct variable groups:   𝑓,,𝑖,𝐼   𝑆,𝑓,,𝑖   𝑓,𝐺,,𝑖
Allowed substitution hints:   𝑊(𝑓,,𝑖)   0 (𝑓,,𝑖)

Proof of Theorem dprdval
Dummy variables 𝑔 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝐺dom DProd 𝑆)
2 reldmdprd 19913 . . . . . 6 Rel dom DProd
32brrelex2i 5676 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
43adantr 480 . . . 4 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝑆 ∈ V)
52brrelex1i 5675 . . . . . 6 (𝐺dom DProd 𝑠𝐺 ∈ V)
6 breq1 5096 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔dom DProd 𝑠𝐺dom DProd 𝑠))
7 oveq1 7359 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑔 DProd 𝑠) = (𝐺 DProd 𝑠))
8 fveq2 6828 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 dprdval.0 . . . . . . . . . . . . . 14 0 = (0g𝐺)
108, 9eqtr4di 2786 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (0g𝑔) = 0 )
1110breq2d 5105 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ( finSupp (0g𝑔) ↔ finSupp 0 ))
1211rabbidv 3403 . . . . . . . . . . 11 (𝑔 = 𝐺 → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} = {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 })
13 oveq1 7359 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔 Σg 𝑓) = (𝐺 Σg 𝑓))
1412, 13mpteq12dv 5180 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) = (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
1514rneqd 5882 . . . . . . . . 9 (𝑔 = 𝐺 → ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
167, 15eqeq12d 2749 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ↔ (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
176, 16imbi12d 344 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓))) ↔ (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))))
18 df-br 5094 . . . . . . . . 9 (𝑔dom DProd 𝑠 ↔ ⟨𝑔, 𝑠⟩ ∈ dom DProd )
19 fvex 6841 . . . . . . . . . . . . . . . . 17 (𝑠𝑖) ∈ V
2019rgenw 3052 . . . . . . . . . . . . . . . 16 𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V
21 ixpexg 8852 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V → X𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V)
2220, 21ax-mp 5 . . . . . . . . . . . . . . 15 X𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V
2322mptrabex 7165 . . . . . . . . . . . . . 14 (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
2423rnex 7846 . . . . . . . . . . . . 13 ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
2524rgen2w 3053 . . . . . . . . . . . 12 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
26 df-dprd 19911 . . . . . . . . . . . . 13 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
2726fmpox 8005 . . . . . . . . . . . 12 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})⟶V)
2825, 27mpbi 230 . . . . . . . . . . 11 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})⟶V
2928fdmi 6667 . . . . . . . . . 10 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})
3029eleq2i 2825 . . . . . . . . 9 (⟨𝑔, 𝑠⟩ ∈ dom DProd ↔ ⟨𝑔, 𝑠⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
31 opeliunxp 5686 . . . . . . . . 9 (⟨𝑔, 𝑠⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}) ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
3218, 30, 313bitri 297 . . . . . . . 8 (𝑔dom DProd 𝑠 ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
3326ovmpt4g 7499 . . . . . . . . 9 ((𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))} ∧ ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3424, 33mp3an3 1452 . . . . . . . 8 ((𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3532, 34sylbi 217 . . . . . . 7 (𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3617, 35vtoclg 3508 . . . . . 6 (𝐺 ∈ V → (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
375, 36mpcom 38 . . . . 5 (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
3837sbcth 3752 . . . 4 (𝑆 ∈ V → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
394, 38syl 17 . . 3 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
40 simpr 484 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
4140breq2d 5105 . . . . 5 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺dom DProd 𝑠𝐺dom DProd 𝑆))
4240oveq2d 7368 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑆))
4340dmeqd 5849 . . . . . . . . . . . . 13 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = dom 𝑆)
44 simplr 768 . . . . . . . . . . . . 13 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑆 = 𝐼)
4543, 44eqtrd 2768 . . . . . . . . . . . 12 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = 𝐼)
4645ixpeq1d 8839 . . . . . . . . . . 11 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠𝑖) = X𝑖𝐼 (𝑠𝑖))
4740fveq1d 6830 . . . . . . . . . . . 12 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑠𝑖) = (𝑆𝑖))
4847ixpeq2dv 8843 . . . . . . . . . . 11 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖𝐼 (𝑠𝑖) = X𝑖𝐼 (𝑆𝑖))
4946, 48eqtrd 2768 . . . . . . . . . 10 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠𝑖) = X𝑖𝐼 (𝑆𝑖))
5049rabeqdv 3411 . . . . . . . . 9 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
51 dprdval.w . . . . . . . . 9 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
5250, 51eqtr4di 2786 . . . . . . . 8 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } = 𝑊)
53 eqidd 2734 . . . . . . . 8 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 Σg 𝑓) = (𝐺 Σg 𝑓))
5452, 53mpteq12dv 5180 . . . . . . 7 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) = (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
5554rneqd 5882 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
5642, 55eqeq12d 2749 . . . . 5 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) ↔ (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
5741, 56imbi12d 344 . . . 4 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))))
584, 57sbcied 3781 . . 3 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → ([𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))))
5939, 58mpbid 232 . 2 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
601, 59mpd 15 1 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  {crab 3396  Vcvv 3437  [wsbc 3737  cdif 3895  cin 3897  wss 3898  {csn 4575  cop 4581   cuni 4858   ciun 4941   class class class wbr 5093  cmpt 5174   × cxp 5617  dom cdm 5619  ran crn 5620  cima 5622  wf 6482  cfv 6486  (class class class)co 7352  Xcixp 8827   finSupp cfsupp 9252  0gc0g 17345   Σg cgsu 17346  mrClscmrc 17487  Grpcgrp 18848  SubGrpcsubg 19035  Cntzccntz 19229   DProd cdprd 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-ixp 8828  df-dprd 19911
This theorem is referenced by:  eldprd  19920  dprdlub  19942
  Copyright terms: Public domain W3C validator