MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprd Structured version   Visualization version   GIF version

Theorem dmdprd 19906
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprd ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprd
Dummy variables 𝑔 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3465 . . . . 5 (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V)
21a1i 11 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V))
3 fex 7182 . . . . . . 7 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐼𝑉) → 𝑆 ∈ V)
43expcom 413 . . . . . 6 (𝐼𝑉 → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
54adantr 480 . . . . 5 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
65adantrd 491 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) → 𝑆 ∈ V))
7 df-sbc 3751 . . . . . 6 ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
8 simpr 484 . . . . . . 7 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
9 simpr 484 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → = 𝑆)
109dmeqd 5859 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = dom 𝑆)
11 simplr 768 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom 𝑆 = 𝐼)
1210, 11eqtrd 2764 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = 𝐼)
139, 12feq12d 6658 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (:dom ⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
1412difeq1d 4084 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (dom ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
159fveq1d 6842 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑥) = (𝑆𝑥))
169fveq1d 6842 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑦) = (𝑆𝑦))
1716fveq2d 6844 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑍‘(𝑦)) = (𝑍‘(𝑆𝑦)))
1815, 17sseq12d 3977 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ⊆ (𝑍‘(𝑦)) ↔ (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1914, 18raleqbidv 3316 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
209, 14imaeq12d 6021 . . . . . . . . . . . . . . 15 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2120unieqd 4880 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2221fveq2d 6844 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝐾 ( “ (dom ∖ {𝑥}))) = (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
2315, 22ineq12d 4180 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
2423eqeq1d 2731 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 } ↔ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
2519, 24anbi12d 632 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2612, 25raleqbidv 3316 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2713, 26anbi12d 632 . . . . . . . 8 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
2827adantlr 715 . . . . . . 7 ((((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
298, 28sbcied 3794 . . . . . 6 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
307, 29bitr3id 285 . . . . 5 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3130ex 412 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ V → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
322, 6, 31pm5.21ndd 379 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3332anbi2d 630 . 2 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
34 df-br 5103 . . 3 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
35 fvex 6853 . . . . . . . . . . 11 (𝑠𝑥) ∈ V
3635rgenw 3048 . . . . . . . . . 10 𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
37 ixpexg 8872 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V → X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V)
3836, 37ax-mp 5 . . . . . . . . 9 X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
3938mptrabex 7181 . . . . . . . 8 (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4039rnex 7866 . . . . . . 7 ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4140rgen2w 3049 . . . . . 6 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
42 df-dprd 19903 . . . . . . 7 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
4342fmpox 8025 . . . . . 6 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V)
4441, 43mpbi 230 . . . . 5 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V
4544fdmi 6681 . . . 4 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})
4645eleq2i 2820 . . 3 (⟨𝐺, 𝑆⟩ ∈ dom DProd ↔ ⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}))
47 fveq2 6840 . . . . . . 7 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
4847feq3d 6655 . . . . . 6 (𝑔 = 𝐺 → (:dom ⟶(SubGrp‘𝑔) ↔ :dom ⟶(SubGrp‘𝐺)))
49 fveq2 6840 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Cntz‘𝑔) = (Cntz‘𝐺))
50 dmdprd.z . . . . . . . . . . . 12 𝑍 = (Cntz‘𝐺)
5149, 50eqtr4di 2782 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Cntz‘𝑔) = 𝑍)
5251fveq1d 6842 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Cntz‘𝑔)‘(𝑦)) = (𝑍‘(𝑦)))
5352sseq2d 3976 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ (𝑥) ⊆ (𝑍‘(𝑦))))
5453ralbidv 3156 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ ∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦))))
5547fveq2d 6844 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = (mrCls‘(SubGrp‘𝐺)))
56 dmdprd.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
5755, 56eqtr4di 2782 . . . . . . . . . . 11 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = 𝐾)
5857fveq1d 6842 . . . . . . . . . 10 (𝑔 = 𝐺 → ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥}))) = (𝐾 ( “ (dom ∖ {𝑥}))))
5958ineq2d 4179 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))))
60 fveq2 6840 . . . . . . . . . . 11 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
61 dmdprd.0 . . . . . . . . . . 11 0 = (0g𝐺)
6260, 61eqtr4di 2782 . . . . . . . . . 10 (𝑔 = 𝐺 → (0g𝑔) = 0 )
6362sneqd 4597 . . . . . . . . 9 (𝑔 = 𝐺 → {(0g𝑔)} = { 0 })
6459, 63eqeq12d 2745 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)} ↔ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))
6554, 64anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6665ralbidv 3156 . . . . . 6 (𝑔 = 𝐺 → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6748, 66anbi12d 632 . . . . 5 (𝑔 = 𝐺 → ((:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)})) ↔ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))))
6867abbidv 2795 . . . 4 (𝑔 = 𝐺 → { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} = { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
6968opeliunxp2 5792 . . 3 (⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}) ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
7034, 46, 693bitri 297 . 2 (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
71 3anass 1094 . 2 ((𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
7233, 70, 713bitr4g 314 1 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3402  Vcvv 3444  [wsbc 3750  cdif 3908  cin 3910  wss 3911  {csn 4585  cop 4591   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183   × cxp 5629  dom cdm 5631  ran crn 5632  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  Xcixp 8847   finSupp cfsupp 9288  0gc0g 17378   Σg cgsu 17379  mrClscmrc 17520  Grpcgrp 18841  SubGrpcsubg 19028  Cntzccntz 19223   DProd cdprd 19901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-ixp 8848  df-dprd 19903
This theorem is referenced by:  dmdprdd  19907  dprdgrp  19913  dprdf  19914  dprdcntz  19916  dprddisj  19917  dprdres  19936  subgdmdprd  19942
  Copyright terms: Public domain W3C validator