MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprd Structured version   Visualization version   GIF version

Theorem dmdprd 18605
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprd ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprd
Dummy variables 𝑔 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3364 . . . . 5 (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V)
21a1i 11 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V))
3 fex 6633 . . . . . . 7 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐼𝑉) → 𝑆 ∈ V)
43expcom 398 . . . . . 6 (𝐼𝑉 → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
54adantr 466 . . . . 5 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
65adantrd 479 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) → 𝑆 ∈ V))
7 df-sbc 3588 . . . . . 6 ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
8 simpr 471 . . . . . . 7 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
9 simpr 471 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → = 𝑆)
109dmeqd 5464 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = dom 𝑆)
11 simplr 752 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom 𝑆 = 𝐼)
1210, 11eqtrd 2805 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = 𝐼)
139, 12feq12d 6173 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (:dom ⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
1412difeq1d 3878 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (dom ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
159fveq1d 6334 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑥) = (𝑆𝑥))
169fveq1d 6334 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑦) = (𝑆𝑦))
1716fveq2d 6336 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑍‘(𝑦)) = (𝑍‘(𝑆𝑦)))
1815, 17sseq12d 3783 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ⊆ (𝑍‘(𝑦)) ↔ (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1914, 18raleqbidv 3301 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
209, 14imaeq12d 5608 . . . . . . . . . . . . . . 15 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2120unieqd 4584 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2221fveq2d 6336 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝐾 ( “ (dom ∖ {𝑥}))) = (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
2315, 22ineq12d 3966 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
2423eqeq1d 2773 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 } ↔ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
2519, 24anbi12d 616 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2612, 25raleqbidv 3301 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2713, 26anbi12d 616 . . . . . . . 8 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
2827adantlr 694 . . . . . . 7 ((((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
298, 28sbcied 3624 . . . . . 6 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
307, 29syl5bbr 274 . . . . 5 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3130ex 397 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ V → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
322, 6, 31pm5.21ndd 368 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3332anbi2d 614 . 2 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
34 df-br 4787 . . 3 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
35 fvex 6342 . . . . . . . . . . 11 (𝑠𝑥) ∈ V
3635rgenw 3073 . . . . . . . . . 10 𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
37 ixpexg 8086 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V → X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V)
3836, 37ax-mp 5 . . . . . . . . 9 X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
3938mptrabex 6632 . . . . . . . 8 (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4039rnex 7247 . . . . . . 7 ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4140rgen2w 3074 . . . . . 6 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
42 df-dprd 18602 . . . . . . 7 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
4342fmpt2x 7386 . . . . . 6 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V)
4441, 43mpbi 220 . . . . 5 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V
4544fdmi 6192 . . . 4 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})
4645eleq2i 2842 . . 3 (⟨𝐺, 𝑆⟩ ∈ dom DProd ↔ ⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}))
47 fveq2 6332 . . . . . . 7 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
4847feq3d 6172 . . . . . 6 (𝑔 = 𝐺 → (:dom ⟶(SubGrp‘𝑔) ↔ :dom ⟶(SubGrp‘𝐺)))
49 fveq2 6332 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Cntz‘𝑔) = (Cntz‘𝐺))
50 dmdprd.z . . . . . . . . . . . 12 𝑍 = (Cntz‘𝐺)
5149, 50syl6eqr 2823 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Cntz‘𝑔) = 𝑍)
5251fveq1d 6334 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Cntz‘𝑔)‘(𝑦)) = (𝑍‘(𝑦)))
5352sseq2d 3782 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ (𝑥) ⊆ (𝑍‘(𝑦))))
5453ralbidv 3135 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ ∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦))))
5547fveq2d 6336 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = (mrCls‘(SubGrp‘𝐺)))
56 dmdprd.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
5755, 56syl6eqr 2823 . . . . . . . . . . 11 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = 𝐾)
5857fveq1d 6334 . . . . . . . . . 10 (𝑔 = 𝐺 → ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥}))) = (𝐾 ( “ (dom ∖ {𝑥}))))
5958ineq2d 3965 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))))
60 fveq2 6332 . . . . . . . . . . 11 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
61 dmdprd.0 . . . . . . . . . . 11 0 = (0g𝐺)
6260, 61syl6eqr 2823 . . . . . . . . . 10 (𝑔 = 𝐺 → (0g𝑔) = 0 )
6362sneqd 4328 . . . . . . . . 9 (𝑔 = 𝐺 → {(0g𝑔)} = { 0 })
6459, 63eqeq12d 2786 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)} ↔ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))
6554, 64anbi12d 616 . . . . . . 7 (𝑔 = 𝐺 → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6665ralbidv 3135 . . . . . 6 (𝑔 = 𝐺 → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6748, 66anbi12d 616 . . . . 5 (𝑔 = 𝐺 → ((:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)})) ↔ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))))
6867abbidv 2890 . . . 4 (𝑔 = 𝐺 → { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} = { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
6968opeliunxp2 5399 . . 3 (⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}) ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
7034, 46, 693bitri 286 . 2 (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
71 3anass 1080 . 2 ((𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
7233, 70, 713bitr4g 303 1 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {cab 2757  wral 3061  {crab 3065  Vcvv 3351  [wsbc 3587  cdif 3720  cin 3722  wss 3723  {csn 4316  cop 4322   cuni 4574   ciun 4654   class class class wbr 4786  cmpt 4863   × cxp 5247  dom cdm 5249  ran crn 5250  cima 5252  wf 6027  cfv 6031  (class class class)co 6793  Xcixp 8062   finSupp cfsupp 8431  0gc0g 16308   Σg cgsu 16309  mrClscmrc 16451  Grpcgrp 17630  SubGrpcsubg 17796  Cntzccntz 17955   DProd cdprd 18600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-ixp 8063  df-dprd 18602
This theorem is referenced by:  dmdprdd  18606  dprdgrp  18612  dprdf  18613  dprdcntz  18615  dprddisj  18616  dprdres  18635  subgdmdprd  18641
  Copyright terms: Public domain W3C validator