Step | Hyp | Ref
| Expression |
1 | | elex 3429 |
. . . . 5
⊢ (𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V) |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V)) |
3 | | fex 6987 |
. . . . . . 7
⊢ ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐼 ∈ 𝑉) → 𝑆 ∈ V) |
4 | 3 | expcom 417 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V)) |
5 | 4 | adantr 484 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V)) |
6 | 5 | adantrd 495 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) → 𝑆 ∈ V)) |
7 | | df-sbc 3700 |
. . . . . 6
⊢
([𝑆 / ℎ](ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 })) ↔ 𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))}) |
8 | | simpr 488 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → 𝑆 ∈ V) |
9 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → ℎ = 𝑆) |
10 | 9 | dmeqd 5752 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → dom ℎ = dom 𝑆) |
11 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → dom 𝑆 = 𝐼) |
12 | 10, 11 | eqtrd 2794 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → dom ℎ = 𝐼) |
13 | 9, 12 | feq12d 6492 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (ℎ:dom ℎ⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺))) |
14 | 12 | difeq1d 4030 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (dom ℎ ∖ {𝑥}) = (𝐼 ∖ {𝑥})) |
15 | 9 | fveq1d 6666 |
. . . . . . . . . . . . 13
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (ℎ‘𝑥) = (𝑆‘𝑥)) |
16 | 9 | fveq1d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (ℎ‘𝑦) = (𝑆‘𝑦)) |
17 | 16 | fveq2d 6668 |
. . . . . . . . . . . . 13
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (𝑍‘(ℎ‘𝑦)) = (𝑍‘(𝑆‘𝑦))) |
18 | 15, 17 | sseq12d 3928 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → ((ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ↔ (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) |
19 | 14, 18 | raleqbidv 3320 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) |
20 | 9, 14 | imaeq12d 5908 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (ℎ “ (dom ℎ ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥}))) |
21 | 20 | unieqd 4816 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → ∪ (ℎ “ (dom ℎ ∖ {𝑥})) = ∪ (𝑆 “ (𝐼 ∖ {𝑥}))) |
22 | 21 | fveq2d 6668 |
. . . . . . . . . . . . 13
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥}))) = (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
23 | 15, 22 | ineq12d 4121 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))))) |
24 | 23 | eqeq1d 2761 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 } ↔ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) |
25 | 19, 24 | anbi12d 633 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → ((∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }) ↔ (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))) |
26 | 12, 25 | raleqbidv 3320 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → (∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }) ↔ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))) |
27 | 13, 26 | anbi12d 633 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ ℎ = 𝑆) → ((ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
28 | 27 | adantlr 714 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) ∧ ℎ = 𝑆) → ((ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
29 | 8, 28 | sbcied 3742 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → ([𝑆 / ℎ](ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
30 | 7, 29 | bitr3id 288 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → (𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
31 | 30 | ex 416 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ V → (𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))) |
32 | 2, 6, 31 | pm5.21ndd 384 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
33 | 32 | anbi2d 631 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → ((𝐺 ∈ Grp ∧ 𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))}) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))) |
34 | | df-br 5038 |
. . 3
⊢ (𝐺dom DProd 𝑆 ↔ 〈𝐺, 𝑆〉 ∈ dom DProd ) |
35 | | fvex 6677 |
. . . . . . . . . . 11
⊢ (𝑠‘𝑥) ∈ V |
36 | 35 | rgenw 3083 |
. . . . . . . . . 10
⊢
∀𝑥 ∈ dom
𝑠(𝑠‘𝑥) ∈ V |
37 | | ixpexg 8518 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
dom 𝑠(𝑠‘𝑥) ∈ V → X𝑥 ∈
dom 𝑠(𝑠‘𝑥) ∈ V) |
38 | 36, 37 | ax-mp 5 |
. . . . . . . . 9
⊢ X𝑥 ∈
dom 𝑠(𝑠‘𝑥) ∈ V |
39 | 38 | mptrabex 6986 |
. . . . . . . 8
⊢ (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V |
40 | 39 | rnex 7629 |
. . . . . . 7
⊢ ran
(𝑓 ∈ {ℎ ∈ X𝑥 ∈
dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V |
41 | 40 | rgen2w 3084 |
. . . . . 6
⊢
∀𝑔 ∈ Grp
∀𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))}ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V |
42 | | df-dprd 19200 |
. . . . . . 7
⊢ DProd =
(𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
43 | 42 | fmpox 7776 |
. . . . . 6
⊢
(∀𝑔 ∈
Grp ∀𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))}ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd
:∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))})⟶V) |
44 | 41, 43 | mpbi 233 |
. . . . 5
⊢ DProd
:∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))})⟶V |
45 | 44 | fdmi 6515 |
. . . 4
⊢ dom DProd
= ∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))}) |
46 | 45 | eleq2i 2844 |
. . 3
⊢
(〈𝐺, 𝑆〉 ∈ dom DProd ↔
〈𝐺, 𝑆〉 ∈ ∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))})) |
47 | | fveq2 6664 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺)) |
48 | 47 | feq3d 6491 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (ℎ:dom ℎ⟶(SubGrp‘𝑔) ↔ ℎ:dom ℎ⟶(SubGrp‘𝐺))) |
49 | | fveq2 6664 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (Cntz‘𝑔) = (Cntz‘𝐺)) |
50 | | dmdprd.z |
. . . . . . . . . . . 12
⊢ 𝑍 = (Cntz‘𝐺) |
51 | 49, 50 | eqtr4di 2812 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (Cntz‘𝑔) = 𝑍) |
52 | 51 | fveq1d 6666 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → ((Cntz‘𝑔)‘(ℎ‘𝑦)) = (𝑍‘(ℎ‘𝑦))) |
53 | 52 | sseq2d 3927 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ↔ (ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)))) |
54 | 53 | ralbidv 3127 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ↔ ∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)))) |
55 | 47 | fveq2d 6668 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) =
(mrCls‘(SubGrp‘𝐺))) |
56 | | dmdprd.k |
. . . . . . . . . . . 12
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
57 | 55, 56 | eqtr4di 2812 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = 𝐾) |
58 | 57 | fveq1d 6666 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥}))) = (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) |
59 | 58 | ineq2d 4120 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) = ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥}))))) |
60 | | fveq2 6664 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) |
61 | | dmdprd.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝐺) |
62 | 60, 61 | eqtr4di 2812 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
63 | 62 | sneqd 4538 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → {(0g‘𝑔)} = { 0 }) |
64 | 59, 63 | eqeq12d 2775 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}
↔ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 })) |
65 | 54, 64 | anbi12d 633 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)})
↔ (∀𝑦 ∈
(dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))) |
66 | 65 | ralbidv 3127 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)})
↔ ∀𝑥 ∈ dom
ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))) |
67 | 48, 66 | anbi12d 633 |
. . . . 5
⊢ (𝑔 = 𝐺 → ((ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))
↔ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 })))) |
68 | 67 | abbidv 2823 |
. . . 4
⊢ (𝑔 = 𝐺 → {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))} = {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))}) |
69 | 68 | opeliunxp2 5685 |
. . 3
⊢
(〈𝐺, 𝑆〉 ∈ ∪ 𝑔 ∈ Grp ({𝑔} × {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))}) ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))})) |
70 | 34, 46, 69 | 3bitri 300 |
. 2
⊢ (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ (𝑍‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ (𝐾‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = { 0 }))})) |
71 | | 3anass 1093 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
72 | 33, 70, 71 | 3bitr4g 317 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |