MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprd Structured version   Visualization version   GIF version

Theorem dmdprd 19120
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprd ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprd
Dummy variables 𝑔 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3512 . . . . 5 (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V)
21a1i 11 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V))
3 fex 6989 . . . . . . 7 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐼𝑉) → 𝑆 ∈ V)
43expcom 416 . . . . . 6 (𝐼𝑉 → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
54adantr 483 . . . . 5 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
65adantrd 494 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) → 𝑆 ∈ V))
7 df-sbc 3773 . . . . . 6 ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
8 simpr 487 . . . . . . 7 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
9 simpr 487 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → = 𝑆)
109dmeqd 5774 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = dom 𝑆)
11 simplr 767 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom 𝑆 = 𝐼)
1210, 11eqtrd 2856 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = 𝐼)
139, 12feq12d 6502 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (:dom ⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
1412difeq1d 4098 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (dom ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
159fveq1d 6672 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑥) = (𝑆𝑥))
169fveq1d 6672 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑦) = (𝑆𝑦))
1716fveq2d 6674 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑍‘(𝑦)) = (𝑍‘(𝑆𝑦)))
1815, 17sseq12d 4000 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ⊆ (𝑍‘(𝑦)) ↔ (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1914, 18raleqbidv 3401 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
209, 14imaeq12d 5930 . . . . . . . . . . . . . . 15 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2120unieqd 4852 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2221fveq2d 6674 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝐾 ( “ (dom ∖ {𝑥}))) = (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
2315, 22ineq12d 4190 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
2423eqeq1d 2823 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 } ↔ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
2519, 24anbi12d 632 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2612, 25raleqbidv 3401 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2713, 26anbi12d 632 . . . . . . . 8 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
2827adantlr 713 . . . . . . 7 ((((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
298, 28sbcied 3814 . . . . . 6 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
307, 29syl5bbr 287 . . . . 5 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3130ex 415 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ V → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
322, 6, 31pm5.21ndd 383 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3332anbi2d 630 . 2 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
34 df-br 5067 . . 3 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
35 fvex 6683 . . . . . . . . . . 11 (𝑠𝑥) ∈ V
3635rgenw 3150 . . . . . . . . . 10 𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
37 ixpexg 8486 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V → X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V)
3836, 37ax-mp 5 . . . . . . . . 9 X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
3938mptrabex 6988 . . . . . . . 8 (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4039rnex 7617 . . . . . . 7 ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4140rgen2w 3151 . . . . . 6 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
42 df-dprd 19117 . . . . . . 7 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
4342fmpox 7765 . . . . . 6 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V)
4441, 43mpbi 232 . . . . 5 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V
4544fdmi 6524 . . . 4 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})
4645eleq2i 2904 . . 3 (⟨𝐺, 𝑆⟩ ∈ dom DProd ↔ ⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}))
47 fveq2 6670 . . . . . . 7 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
4847feq3d 6501 . . . . . 6 (𝑔 = 𝐺 → (:dom ⟶(SubGrp‘𝑔) ↔ :dom ⟶(SubGrp‘𝐺)))
49 fveq2 6670 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Cntz‘𝑔) = (Cntz‘𝐺))
50 dmdprd.z . . . . . . . . . . . 12 𝑍 = (Cntz‘𝐺)
5149, 50syl6eqr 2874 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Cntz‘𝑔) = 𝑍)
5251fveq1d 6672 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Cntz‘𝑔)‘(𝑦)) = (𝑍‘(𝑦)))
5352sseq2d 3999 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ (𝑥) ⊆ (𝑍‘(𝑦))))
5453ralbidv 3197 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ ∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦))))
5547fveq2d 6674 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = (mrCls‘(SubGrp‘𝐺)))
56 dmdprd.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
5755, 56syl6eqr 2874 . . . . . . . . . . 11 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = 𝐾)
5857fveq1d 6672 . . . . . . . . . 10 (𝑔 = 𝐺 → ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥}))) = (𝐾 ( “ (dom ∖ {𝑥}))))
5958ineq2d 4189 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))))
60 fveq2 6670 . . . . . . . . . . 11 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
61 dmdprd.0 . . . . . . . . . . 11 0 = (0g𝐺)
6260, 61syl6eqr 2874 . . . . . . . . . 10 (𝑔 = 𝐺 → (0g𝑔) = 0 )
6362sneqd 4579 . . . . . . . . 9 (𝑔 = 𝐺 → {(0g𝑔)} = { 0 })
6459, 63eqeq12d 2837 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)} ↔ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))
6554, 64anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6665ralbidv 3197 . . . . . 6 (𝑔 = 𝐺 → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6748, 66anbi12d 632 . . . . 5 (𝑔 = 𝐺 → ((:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)})) ↔ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))))
6867abbidv 2885 . . . 4 (𝑔 = 𝐺 → { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} = { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
6968opeliunxp2 5709 . . 3 (⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}) ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
7034, 46, 693bitri 299 . 2 (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
71 3anass 1091 . 2 ((𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
7233, 70, 713bitr4g 316 1 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  {crab 3142  Vcvv 3494  [wsbc 3772  cdif 3933  cin 3935  wss 3936  {csn 4567  cop 4573   cuni 4838   ciun 4919   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  Xcixp 8461   finSupp cfsupp 8833  0gc0g 16713   Σg cgsu 16714  mrClscmrc 16854  Grpcgrp 18103  SubGrpcsubg 18273  Cntzccntz 18445   DProd cdprd 19115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-ixp 8462  df-dprd 19117
This theorem is referenced by:  dmdprdd  19121  dprdgrp  19127  dprdf  19128  dprdcntz  19130  dprddisj  19131  dprdres  19150  subgdmdprd  19156
  Copyright terms: Public domain W3C validator