MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprd Structured version   Visualization version   GIF version

Theorem dmdprd 19920
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprd ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprd
Dummy variables 𝑔 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3458 . . . . 5 (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V)
21a1i 11 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V))
3 fex 7169 . . . . . . 7 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐼𝑉) → 𝑆 ∈ V)
43expcom 413 . . . . . 6 (𝐼𝑉 → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
54adantr 480 . . . . 5 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
65adantrd 491 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) → 𝑆 ∈ V))
7 df-sbc 3738 . . . . . 6 ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
8 simpr 484 . . . . . . 7 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
9 simpr 484 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → = 𝑆)
109dmeqd 5851 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = dom 𝑆)
11 simplr 768 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom 𝑆 = 𝐼)
1210, 11eqtrd 2768 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = 𝐼)
139, 12feq12d 6647 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (:dom ⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
1412difeq1d 4074 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (dom ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
159fveq1d 6833 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑥) = (𝑆𝑥))
169fveq1d 6833 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑦) = (𝑆𝑦))
1716fveq2d 6835 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑍‘(𝑦)) = (𝑍‘(𝑆𝑦)))
1815, 17sseq12d 3964 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ⊆ (𝑍‘(𝑦)) ↔ (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1914, 18raleqbidv 3313 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
209, 14imaeq12d 6017 . . . . . . . . . . . . . . 15 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2120unieqd 4873 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2221fveq2d 6835 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝐾 ( “ (dom ∖ {𝑥}))) = (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
2315, 22ineq12d 4170 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
2423eqeq1d 2735 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 } ↔ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
2519, 24anbi12d 632 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2612, 25raleqbidv 3313 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2713, 26anbi12d 632 . . . . . . . 8 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
2827adantlr 715 . . . . . . 7 ((((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
298, 28sbcied 3781 . . . . . 6 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
307, 29bitr3id 285 . . . . 5 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3130ex 412 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ V → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
322, 6, 31pm5.21ndd 379 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3332anbi2d 630 . 2 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
34 df-br 5096 . . 3 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
35 fvex 6844 . . . . . . . . . . 11 (𝑠𝑥) ∈ V
3635rgenw 3052 . . . . . . . . . 10 𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
37 ixpexg 8856 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V → X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V)
3836, 37ax-mp 5 . . . . . . . . 9 X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
3938mptrabex 7168 . . . . . . . 8 (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4039rnex 7849 . . . . . . 7 ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4140rgen2w 3053 . . . . . 6 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
42 df-dprd 19917 . . . . . . 7 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
4342fmpox 8008 . . . . . 6 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V)
4441, 43mpbi 230 . . . . 5 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V
4544fdmi 6670 . . . 4 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})
4645eleq2i 2825 . . 3 (⟨𝐺, 𝑆⟩ ∈ dom DProd ↔ ⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}))
47 fveq2 6831 . . . . . . 7 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
4847feq3d 6644 . . . . . 6 (𝑔 = 𝐺 → (:dom ⟶(SubGrp‘𝑔) ↔ :dom ⟶(SubGrp‘𝐺)))
49 fveq2 6831 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Cntz‘𝑔) = (Cntz‘𝐺))
50 dmdprd.z . . . . . . . . . . . 12 𝑍 = (Cntz‘𝐺)
5149, 50eqtr4di 2786 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Cntz‘𝑔) = 𝑍)
5251fveq1d 6833 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Cntz‘𝑔)‘(𝑦)) = (𝑍‘(𝑦)))
5352sseq2d 3963 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ (𝑥) ⊆ (𝑍‘(𝑦))))
5453ralbidv 3156 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ ∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦))))
5547fveq2d 6835 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = (mrCls‘(SubGrp‘𝐺)))
56 dmdprd.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
5755, 56eqtr4di 2786 . . . . . . . . . . 11 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = 𝐾)
5857fveq1d 6833 . . . . . . . . . 10 (𝑔 = 𝐺 → ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥}))) = (𝐾 ( “ (dom ∖ {𝑥}))))
5958ineq2d 4169 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))))
60 fveq2 6831 . . . . . . . . . . 11 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
61 dmdprd.0 . . . . . . . . . . 11 0 = (0g𝐺)
6260, 61eqtr4di 2786 . . . . . . . . . 10 (𝑔 = 𝐺 → (0g𝑔) = 0 )
6362sneqd 4589 . . . . . . . . 9 (𝑔 = 𝐺 → {(0g𝑔)} = { 0 })
6459, 63eqeq12d 2749 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)} ↔ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))
6554, 64anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6665ralbidv 3156 . . . . . 6 (𝑔 = 𝐺 → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6748, 66anbi12d 632 . . . . 5 (𝑔 = 𝐺 → ((:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)})) ↔ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))))
6867abbidv 2799 . . . 4 (𝑔 = 𝐺 → { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} = { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
6968opeliunxp2 5784 . . 3 (⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}) ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
7034, 46, 693bitri 297 . 2 (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
71 3anass 1094 . 2 ((𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
7233, 70, 713bitr4g 314 1 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wral 3048  {crab 3396  Vcvv 3437  [wsbc 3737  cdif 3895  cin 3897  wss 3898  {csn 4577  cop 4583   cuni 4860   ciun 4943   class class class wbr 5095  cmpt 5176   × cxp 5619  dom cdm 5621  ran crn 5622  cima 5624  wf 6485  cfv 6489  (class class class)co 7355  Xcixp 8831   finSupp cfsupp 9256  0gc0g 17350   Σg cgsu 17351  mrClscmrc 17493  Grpcgrp 18854  SubGrpcsubg 19041  Cntzccntz 19235   DProd cdprd 19915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-ixp 8832  df-dprd 19917
This theorem is referenced by:  dmdprdd  19921  dprdgrp  19927  dprdf  19928  dprdcntz  19930  dprddisj  19931  dprdres  19950  subgdmdprd  19956
  Copyright terms: Public domain W3C validator