MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprd Structured version   Visualization version   GIF version

Theorem dmdprd 19601
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dmdprd ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprd
Dummy variables 𝑔 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . . . . 5 (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V)
21a1i 11 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} → 𝑆 ∈ V))
3 fex 7102 . . . . . . 7 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐼𝑉) → 𝑆 ∈ V)
43expcom 414 . . . . . 6 (𝐼𝑉 → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
54adantr 481 . . . . 5 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 ∈ V))
65adantrd 492 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) → 𝑆 ∈ V))
7 df-sbc 3717 . . . . . 6 ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
8 simpr 485 . . . . . . 7 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
9 simpr 485 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → = 𝑆)
109dmeqd 5814 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = dom 𝑆)
11 simplr 766 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom 𝑆 = 𝐼)
1210, 11eqtrd 2778 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → dom = 𝐼)
139, 12feq12d 6588 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (:dom ⟶(SubGrp‘𝐺) ↔ 𝑆:𝐼⟶(SubGrp‘𝐺)))
1412difeq1d 4056 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (dom ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
159fveq1d 6776 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑥) = (𝑆𝑥))
169fveq1d 6776 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑦) = (𝑆𝑦))
1716fveq2d 6778 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝑍‘(𝑦)) = (𝑍‘(𝑆𝑦)))
1815, 17sseq12d 3954 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ⊆ (𝑍‘(𝑦)) ↔ (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1914, 18raleqbidv 3336 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
209, 14imaeq12d 5970 . . . . . . . . . . . . . . 15 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2120unieqd 4853 . . . . . . . . . . . . . 14 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ( “ (dom ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑥})))
2221fveq2d 6778 . . . . . . . . . . . . 13 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (𝐾 ( “ (dom ∖ {𝑥}))) = (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
2315, 22ineq12d 4147 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
2423eqeq1d 2740 . . . . . . . . . . 11 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 } ↔ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
2519, 24anbi12d 631 . . . . . . . . . 10 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2612, 25raleqbidv 3336 . . . . . . . . 9 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }) ↔ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
2713, 26anbi12d 631 . . . . . . . 8 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
2827adantlr 712 . . . . . . 7 ((((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) ∧ = 𝑆) → ((:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
298, 28sbcied 3761 . . . . . 6 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → ([𝑆 / ](:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })) ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
307, 29bitr3id 285 . . . . 5 (((𝐼𝑉 ∧ dom 𝑆 = 𝐼) ∧ 𝑆 ∈ V) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3130ex 413 . . . 4 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ V → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
322, 6, 31pm5.21ndd 381 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))} ↔ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
3332anbi2d 629 . 2 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → ((𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))))
34 df-br 5075 . . 3 (𝐺dom DProd 𝑆 ↔ ⟨𝐺, 𝑆⟩ ∈ dom DProd )
35 fvex 6787 . . . . . . . . . . 11 (𝑠𝑥) ∈ V
3635rgenw 3076 . . . . . . . . . 10 𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
37 ixpexg 8710 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V → X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V)
3836, 37ax-mp 5 . . . . . . . . 9 X𝑥 ∈ dom 𝑠(𝑠𝑥) ∈ V
3938mptrabex 7101 . . . . . . . 8 (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4039rnex 7759 . . . . . . 7 ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
4140rgen2w 3077 . . . . . 6 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
42 df-dprd 19598 . . . . . . 7 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
4342fmpox 7907 . . . . . 6 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V)
4441, 43mpbi 229 . . . . 5 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})⟶V
4544fdmi 6612 . . . 4 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))})
4645eleq2i 2830 . . 3 (⟨𝐺, 𝑆⟩ ∈ dom DProd ↔ ⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}))
47 fveq2 6774 . . . . . . 7 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
4847feq3d 6587 . . . . . 6 (𝑔 = 𝐺 → (:dom ⟶(SubGrp‘𝑔) ↔ :dom ⟶(SubGrp‘𝐺)))
49 fveq2 6774 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Cntz‘𝑔) = (Cntz‘𝐺))
50 dmdprd.z . . . . . . . . . . . 12 𝑍 = (Cntz‘𝐺)
5149, 50eqtr4di 2796 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Cntz‘𝑔) = 𝑍)
5251fveq1d 6776 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Cntz‘𝑔)‘(𝑦)) = (𝑍‘(𝑦)))
5352sseq2d 3953 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ (𝑥) ⊆ (𝑍‘(𝑦))))
5453ralbidv 3112 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ↔ ∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦))))
5547fveq2d 6778 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = (mrCls‘(SubGrp‘𝐺)))
56 dmdprd.k . . . . . . . . . . . 12 𝐾 = (mrCls‘(SubGrp‘𝐺))
5755, 56eqtr4di 2796 . . . . . . . . . . 11 (𝑔 = 𝐺 → (mrCls‘(SubGrp‘𝑔)) = 𝐾)
5857fveq1d 6776 . . . . . . . . . 10 (𝑔 = 𝐺 → ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥}))) = (𝐾 ( “ (dom ∖ {𝑥}))))
5958ineq2d 4146 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))))
60 fveq2 6774 . . . . . . . . . . 11 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
61 dmdprd.0 . . . . . . . . . . 11 0 = (0g𝐺)
6260, 61eqtr4di 2796 . . . . . . . . . 10 (𝑔 = 𝐺 → (0g𝑔) = 0 )
6362sneqd 4573 . . . . . . . . 9 (𝑔 = 𝐺 → {(0g𝑔)} = { 0 })
6459, 63eqeq12d 2754 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)} ↔ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))
6554, 64anbi12d 631 . . . . . . 7 (𝑔 = 𝐺 → ((∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6665ralbidv 3112 . . . . . 6 (𝑔 = 𝐺 → (∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}) ↔ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 })))
6748, 66anbi12d 631 . . . . 5 (𝑔 = 𝐺 → ((:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)})) ↔ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))))
6867abbidv 2807 . . . 4 (𝑔 = 𝐺 → { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} = { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))})
6968opeliunxp2 5747 . . 3 (⟨𝐺, 𝑆⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))}) ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
7034, 46, 693bitri 297 . 2 (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆 ∈ { ∣ (:dom ⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ (𝑍‘(𝑦)) ∧ ((𝑥) ∩ (𝐾 ( “ (dom ∖ {𝑥})))) = { 0 }))}))
71 3anass 1094 . 2 ((𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) ↔ (𝐺 ∈ Grp ∧ (𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
7233, 70, 713bitr4g 314 1 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  {crab 3068  Vcvv 3432  [wsbc 3716  cdif 3884  cin 3886  wss 3887  {csn 4561  cop 4567   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  Xcixp 8685   finSupp cfsupp 9128  0gc0g 17150   Σg cgsu 17151  mrClscmrc 17292  Grpcgrp 18577  SubGrpcsubg 18749  Cntzccntz 18921   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-ixp 8686  df-dprd 19598
This theorem is referenced by:  dmdprdd  19602  dprdgrp  19608  dprdf  19609  dprdcntz  19611  dprddisj  19612  dprdres  19631  subgdmdprd  19637
  Copyright terms: Public domain W3C validator