MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs Structured version   Visualization version   GIF version

Theorem isdrs 17934
Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
isdrs (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdrs
Dummy variables 𝑓 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
2 isdrs.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2797 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐵)
4 fveq2 6756 . . . . . . 7 (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾))
5 isdrs.l . . . . . . 7 = (le‘𝐾)
64, 5eqtr4di 2797 . . . . . 6 (𝑓 = 𝐾 → (le‘𝑓) = )
76sbceq1d 3716 . . . . 5 (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
83, 7sbceqbid 3718 . . . 4 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
92fvexi 6770 . . . . 5 𝐵 ∈ V
105fvexi 6770 . . . . 5 ∈ V
11 neeq1 3005 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
1211adantr 480 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
13 rexeq 3334 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1413raleqbi1dv 3331 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1514raleqbi1dv 3331 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
16 breq 5072 . . . . . . . . . 10 (𝑟 = → (𝑥𝑟𝑧𝑥 𝑧))
17 breq 5072 . . . . . . . . . 10 (𝑟 = → (𝑦𝑟𝑧𝑦 𝑧))
1816, 17anbi12d 630 . . . . . . . . 9 (𝑟 = → ((𝑥𝑟𝑧𝑦𝑟𝑧) ↔ (𝑥 𝑧𝑦 𝑧)))
1918rexbidv 3225 . . . . . . . 8 (𝑟 = → (∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
20192ralbidv 3122 . . . . . . 7 (𝑟 = → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2115, 20sylan9bb 509 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2212, 21anbi12d 630 . . . . 5 ((𝑏 = 𝐵𝑟 = ) → ((𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
239, 10, 22sbc2ie 3795 . . . 4 ([𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
248, 23bitrdi 286 . . 3 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
25 df-drs 17929 . . 3 Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
2624, 25elrab2 3620 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
27 3anass 1093 . 2 ((𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)) ↔ (𝐾 ∈ Proset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
2826, 27bitr4i 277 1 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  [wsbc 3711  c0 4253   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895   Proset cproset 17926  Dirsetcdrs 17927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-drs 17929
This theorem is referenced by:  drsdir  17935  drsprs  17936  drsbn0  17937  isdrs2  17939  isipodrs  18170
  Copyright terms: Public domain W3C validator