MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs Structured version   Visualization version   GIF version

Theorem isdrs 17536
Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
isdrs (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdrs
Dummy variables 𝑓 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
2 isdrs.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2851 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐵)
4 fveq2 6645 . . . . . . 7 (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾))
5 isdrs.l . . . . . . 7 = (le‘𝐾)
64, 5eqtr4di 2851 . . . . . 6 (𝑓 = 𝐾 → (le‘𝑓) = )
76sbceq1d 3725 . . . . 5 (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
83, 7sbceqbid 3727 . . . 4 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
92fvexi 6659 . . . . 5 𝐵 ∈ V
105fvexi 6659 . . . . 5 ∈ V
11 neeq1 3049 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
1211adantr 484 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
13 rexeq 3359 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1413raleqbi1dv 3356 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1514raleqbi1dv 3356 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
16 breq 5032 . . . . . . . . . 10 (𝑟 = → (𝑥𝑟𝑧𝑥 𝑧))
17 breq 5032 . . . . . . . . . 10 (𝑟 = → (𝑦𝑟𝑧𝑦 𝑧))
1816, 17anbi12d 633 . . . . . . . . 9 (𝑟 = → ((𝑥𝑟𝑧𝑦𝑟𝑧) ↔ (𝑥 𝑧𝑦 𝑧)))
1918rexbidv 3256 . . . . . . . 8 (𝑟 = → (∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
20192ralbidv 3164 . . . . . . 7 (𝑟 = → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2115, 20sylan9bb 513 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2212, 21anbi12d 633 . . . . 5 ((𝑏 = 𝐵𝑟 = ) → ((𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
239, 10, 22sbc2ie 3796 . . . 4 ([𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
248, 23syl6bb 290 . . 3 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
25 df-drs 17531 . . 3 Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
2624, 25elrab2 3631 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
27 3anass 1092 . 2 ((𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)) ↔ (𝐾 ∈ Proset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
2826, 27bitr4i 281 1 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  [wsbc 3720  c0 4243   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564   Proset cproset 17528  Dirsetcdrs 17529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-drs 17531
This theorem is referenced by:  drsdir  17537  drsprs  17538  drsbn0  17539  isdrs2  17541  isipodrs  17763
  Copyright terms: Public domain W3C validator