Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . 6
⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) |
2 | | isdrs.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
3 | 1, 2 | eqtr4di 2797 |
. . . . 5
⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐵) |
4 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾)) |
5 | | isdrs.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
6 | 4, 5 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑓 = 𝐾 → (le‘𝑓) = ≤ ) |
7 | 6 | sbceq1d 3716 |
. . . . 5
⊢ (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧)) ↔ [ ≤ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧)))) |
8 | 3, 7 | sbceqbid 3718 |
. . . 4
⊢ (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧)) ↔ [𝐵 / 𝑏][ ≤ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧)))) |
9 | 2 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
10 | 5 | fvexi 6770 |
. . . . 5
⊢ ≤ ∈
V |
11 | | neeq1 3005 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅)) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅)) |
13 | | rexeq 3334 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))) |
14 | 13 | raleqbi1dv 3331 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧) ↔ ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))) |
15 | 14 | raleqbi1dv 3331 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))) |
16 | | breq 5072 |
. . . . . . . . . 10
⊢ (𝑟 = ≤ → (𝑥𝑟𝑧 ↔ 𝑥 ≤ 𝑧)) |
17 | | breq 5072 |
. . . . . . . . . 10
⊢ (𝑟 = ≤ → (𝑦𝑟𝑧 ↔ 𝑦 ≤ 𝑧)) |
18 | 16, 17 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑟 = ≤ → ((𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧) ↔ (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
19 | 18 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑟 = ≤ → (∃𝑧 ∈ 𝐵 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧) ↔ ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
20 | 19 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑟 = ≤ → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
21 | 15, 20 | sylan9bb 509 |
. . . . . 6
⊢ ((𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
22 | 12, 21 | anbi12d 630 |
. . . . 5
⊢ ((𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → ((𝑏 ≠ ∅ ∧
∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)))) |
23 | 9, 10, 22 | sbc2ie 3795 |
. . . 4
⊢
([𝐵 / 𝑏][ ≤ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |
24 | 8, 23 | bitrdi 286 |
. . 3
⊢ (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)))) |
25 | | df-drs 17929 |
. . 3
⊢ Dirset =
{𝑓 ∈ Proset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))} |
26 | 24, 25 | elrab2 3620 |
. 2
⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)))) |
27 | | 3anass 1093 |
. 2
⊢ ((𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)) ↔ (𝐾 ∈ Proset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧)))) |
28 | 26, 27 | bitr4i 277 |
1
⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) |