MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrval Structured version   Visualization version   GIF version

Theorem dvdsrval 19130
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrval = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧,𝐵,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . 3 = (∥r𝑅)
2 fveq2 6504 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 dvdsr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
42, 3syl6eqr 2834 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54eleq2d 2853 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥𝐵))
64rexeqdv 3358 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦))
75, 6anbi12d 622 . . . . . 6 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦)))
8 fveq2 6504 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
9 dvdsr.3 . . . . . . . . . . 11 · = (.r𝑅)
108, 9syl6eqr 2834 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
1110oveqd 6999 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(.r𝑟)𝑥) = (𝑧 · 𝑥))
1211eqeq1d 2782 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(.r𝑟)𝑥) = 𝑦 ↔ (𝑧 · 𝑥) = 𝑦))
1312rexbidv 3244 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
1413anbi2d 620 . . . . . 6 (𝑟 = 𝑅 → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
157, 14bitrd 271 . . . . 5 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
1615opabbidv 5000 . . . 4 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
17 df-dvdsr 19126 . . . 4 r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)})
183fvexi 6518 . . . . 5 𝐵 ∈ V
19 eqcom 2787 . . . . . . . . 9 ((𝑧 · 𝑥) = 𝑦𝑦 = (𝑧 · 𝑥))
2019rexbii 3196 . . . . . . . 8 (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥))
2120abbii 2846 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} = {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)}
2218abrexex 7481 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)} ∈ V
2321, 22eqeltri 2864 . . . . . 6 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V
2423a1i 11 . . . . 5 (𝑥𝐵 → {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V)
2518, 24opabex3 7486 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ∈ V
2616, 17, 25fvmpt 6601 . . 3 (𝑅 ∈ V → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
271, 26syl5eq 2828 . 2 (𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
28 fvprc 6497 . . . 4 𝑅 ∈ V → (∥r𝑅) = ∅)
291, 28syl5eq 2828 . . 3 𝑅 ∈ V → = ∅)
30 opabn0 5296 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ ↔ ∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
31 n0i 4188 . . . . . . . 8 (𝑥𝐵 → ¬ 𝐵 = ∅)
32 fvprc 6497 . . . . . . . . 9 𝑅 ∈ V → (Base‘𝑅) = ∅)
333, 32syl5eq 2828 . . . . . . . 8 𝑅 ∈ V → 𝐵 = ∅)
3431, 33nsyl2 145 . . . . . . 7 (𝑥𝐵𝑅 ∈ V)
3534adantr 473 . . . . . 6 ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3635exlimivv 1892 . . . . 5 (∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3730, 36sylbi 209 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ → 𝑅 ∈ V)
3837necon1bi 2997 . . 3 𝑅 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = ∅)
3929, 38eqtr4d 2819 . 2 𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
4027, 39pm2.61i 177 1 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 387   = wceq 1508  wex 1743  wcel 2051  {cab 2760  wne 2969  wrex 3091  Vcvv 3417  c0 4181  {copab 4996  cfv 6193  (class class class)co 6982  Basecbs 16345  .rcmulr 16428  rcdsr 19123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-id 5316  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-ov 6985  df-dvdsr 19126
This theorem is referenced by:  dvdsr  19131  dvdsrpropd  19181  dvdsrzring  20347
  Copyright terms: Public domain W3C validator