MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrval Structured version   Visualization version   GIF version

Theorem dvdsrval 20281
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrval = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧,𝐵,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . 3 = (∥r𝑅)
2 fveq2 6828 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 dvdsr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2786 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54eleq2d 2819 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥𝐵))
64rexeqdv 3294 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦))
75, 6anbi12d 632 . . . . . 6 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦)))
8 fveq2 6828 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
9 dvdsr.3 . . . . . . . . . . 11 · = (.r𝑅)
108, 9eqtr4di 2786 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
1110oveqd 7369 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(.r𝑟)𝑥) = (𝑧 · 𝑥))
1211eqeq1d 2735 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(.r𝑟)𝑥) = 𝑦 ↔ (𝑧 · 𝑥) = 𝑦))
1312rexbidv 3157 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
1413anbi2d 630 . . . . . 6 (𝑟 = 𝑅 → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
157, 14bitrd 279 . . . . 5 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
1615opabbidv 5159 . . . 4 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
17 df-dvdsr 20277 . . . 4 r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)})
183fvexi 6842 . . . . 5 𝐵 ∈ V
19 eqcom 2740 . . . . . . . . 9 ((𝑧 · 𝑥) = 𝑦𝑦 = (𝑧 · 𝑥))
2019rexbii 3080 . . . . . . . 8 (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥))
2120abbii 2800 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} = {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)}
2218abrexex 7900 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)} ∈ V
2321, 22eqeltri 2829 . . . . . 6 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V
2423a1i 11 . . . . 5 (𝑥𝐵 → {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V)
2518, 24opabex3 7905 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ∈ V
2616, 17, 25fvmpt 6935 . . 3 (𝑅 ∈ V → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
271, 26eqtrid 2780 . 2 (𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
28 fvprc 6820 . . . 4 𝑅 ∈ V → (∥r𝑅) = ∅)
291, 28eqtrid 2780 . . 3 𝑅 ∈ V → = ∅)
30 opabn0 5496 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ ↔ ∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
31 n0i 4289 . . . . . . . 8 (𝑥𝐵 → ¬ 𝐵 = ∅)
32 fvprc 6820 . . . . . . . . 9 𝑅 ∈ V → (Base‘𝑅) = ∅)
333, 32eqtrid 2780 . . . . . . . 8 𝑅 ∈ V → 𝐵 = ∅)
3431, 33nsyl2 141 . . . . . . 7 (𝑥𝐵𝑅 ∈ V)
3534adantr 480 . . . . . 6 ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3635exlimivv 1933 . . . . 5 (∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3730, 36sylbi 217 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ → 𝑅 ∈ V)
3837necon1bi 2957 . . 3 𝑅 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = ∅)
3929, 38eqtr4d 2771 . 2 𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
4027, 39pm2.61i 182 1 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wne 2929  wrex 3057  Vcvv 3437  c0 4282  {copab 5155  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  rcdsr 20274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-dvdsr 20277
This theorem is referenced by:  dvdsr  20282  dvdsrpropd  20336  dvdsrzring  21400
  Copyright terms: Public domain W3C validator