MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrval Structured version   Visualization version   GIF version

Theorem dvdsrval 19887
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrval = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧,𝐵,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . 3 = (∥r𝑅)
2 fveq2 6774 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 dvdsr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2796 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54eleq2d 2824 . . . . . . 7 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥𝐵))
64rexeqdv 3349 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦))
75, 6anbi12d 631 . . . . . 6 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦)))
8 fveq2 6774 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
9 dvdsr.3 . . . . . . . . . . 11 · = (.r𝑅)
108, 9eqtr4di 2796 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
1110oveqd 7292 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑧(.r𝑟)𝑥) = (𝑧 · 𝑥))
1211eqeq1d 2740 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑧(.r𝑟)𝑥) = 𝑦 ↔ (𝑧 · 𝑥) = 𝑦))
1312rexbidv 3226 . . . . . . 7 (𝑟 = 𝑅 → (∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
1413anbi2d 629 . . . . . 6 (𝑟 = 𝑅 → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
157, 14bitrd 278 . . . . 5 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)))
1615opabbidv 5140 . . . 4 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
17 df-dvdsr 19883 . . . 4 r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)})
183fvexi 6788 . . . . 5 𝐵 ∈ V
19 eqcom 2745 . . . . . . . . 9 ((𝑧 · 𝑥) = 𝑦𝑦 = (𝑧 · 𝑥))
2019rexbii 3181 . . . . . . . 8 (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥))
2120abbii 2808 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} = {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)}
2218abrexex 7805 . . . . . . 7 {𝑦 ∣ ∃𝑧𝐵 𝑦 = (𝑧 · 𝑥)} ∈ V
2321, 22eqeltri 2835 . . . . . 6 {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V
2423a1i 11 . . . . 5 (𝑥𝐵 → {𝑦 ∣ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦} ∈ V)
2518, 24opabex3 7810 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ∈ V
2616, 17, 25fvmpt 6875 . . 3 (𝑅 ∈ V → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
271, 26eqtrid 2790 . 2 (𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
28 fvprc 6766 . . . 4 𝑅 ∈ V → (∥r𝑅) = ∅)
291, 28eqtrid 2790 . . 3 𝑅 ∈ V → = ∅)
30 opabn0 5466 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ ↔ ∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦))
31 n0i 4267 . . . . . . . 8 (𝑥𝐵 → ¬ 𝐵 = ∅)
32 fvprc 6766 . . . . . . . . 9 𝑅 ∈ V → (Base‘𝑅) = ∅)
333, 32eqtrid 2790 . . . . . . . 8 𝑅 ∈ V → 𝐵 = ∅)
3431, 33nsyl2 141 . . . . . . 7 (𝑥𝐵𝑅 ∈ V)
3534adantr 481 . . . . . 6 ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3635exlimivv 1935 . . . . 5 (∃𝑥𝑦(𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) → 𝑅 ∈ V)
3730, 36sylbi 216 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} ≠ ∅ → 𝑅 ∈ V)
3837necon1bi 2972 . . 3 𝑅 ∈ V → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = ∅)
3929, 38eqtr4d 2781 . 2 𝑅 ∈ V → = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
4027, 39pm2.61i 182 1 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wrex 3065  Vcvv 3432  c0 4256  {copab 5136  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  rcdsr 19880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-dvdsr 19883
This theorem is referenced by:  dvdsr  19888  dvdsrpropd  19938  dvdsrzring  20683
  Copyright terms: Public domain W3C validator