MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldvdsr Structured version   Visualization version   GIF version

Theorem reldvdsr 20280
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypothesis
Ref Expression
reldvdsr.1 = (∥r𝑅)
Assertion
Ref Expression
reldvdsr Rel

Proof of Theorem reldvdsr
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 20277 . . 3 r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
21relmptopab 7602 . 2 Rel (∥r𝑅)
3 reldvdsr.1 . . 3 = (∥r𝑅)
43releqi 5722 . 2 (Rel ↔ Rel (∥r𝑅))
52, 4mpbir 231 1 Rel
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  Rel wrel 5624  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  rcdsr 20274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-dvdsr 20277
This theorem is referenced by:  dvdsr  20282  isunit  20293  subrgdvds  20503  ellpi  33345
  Copyright terms: Public domain W3C validator