MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldvdsr Structured version   Visualization version   GIF version

Theorem reldvdsr 20386
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypothesis
Ref Expression
reldvdsr.1 = (∥r𝑅)
Assertion
Ref Expression
reldvdsr Rel

Proof of Theorem reldvdsr
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 20383 . . 3 r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
21relmptopab 7700 . 2 Rel (∥r𝑅)
3 reldvdsr.1 . . 3 = (∥r𝑅)
43releqi 5801 . 2 (Rel ↔ Rel (∥r𝑅))
52, 4mpbir 231 1 Rel
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  Rel wrel 5705  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  rcdsr 20380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-dvdsr 20383
This theorem is referenced by:  dvdsr  20388  isunit  20399  subrgdvds  20614  ellpi  33366
  Copyright terms: Public domain W3C validator