| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldvdsr | Structured version Visualization version GIF version | ||
| Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| reldvdsr.1 | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| reldvdsr | ⊢ Rel ∥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvdsr 20277 | . . 3 ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) | |
| 2 | 1 | relmptopab 7602 | . 2 ⊢ Rel (∥r‘𝑅) |
| 3 | reldvdsr.1 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
| 4 | 3 | releqi 5722 | . 2 ⊢ (Rel ∥ ↔ Rel (∥r‘𝑅)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ Rel ∥ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 Rel wrel 5624 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 ∥rcdsr 20274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-dvdsr 20277 |
| This theorem is referenced by: dvdsr 20282 isunit 20293 subrgdvds 20503 ellpi 33345 |
| Copyright terms: Public domain | W3C validator |