| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldvdsr | Structured version Visualization version GIF version | ||
| Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| reldvdsr.1 | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| reldvdsr | ⊢ Rel ∥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvdsr 20272 | . . 3 ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) | |
| 2 | 1 | relmptopab 7641 | . 2 ⊢ Rel (∥r‘𝑅) |
| 3 | reldvdsr.1 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
| 4 | 3 | releqi 5742 | . 2 ⊢ (Rel ∥ ↔ Rel (∥r‘𝑅)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ Rel ∥ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 Rel wrel 5645 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 .rcmulr 17227 ∥rcdsr 20269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-dvdsr 20272 |
| This theorem is referenced by: dvdsr 20277 isunit 20288 subrgdvds 20501 ellpi 33350 |
| Copyright terms: Public domain | W3C validator |